
Differentiate the following function with respect to $x$: $\dfrac{\sec x+\tan x}{\sec x-\tan x}$
Answer
552.3k+ views
Hint: Simplify the expression by using the identity for the \[\sec \theta \] and \[\tan \theta \]. After that we need to apply here the product rule of differentiation when the differentiating the two function which is multiplied together,
\[\dfrac{d}{dx}\text{ }[f(x)\text{ }g(x)]\text{ }=\text{ }f(x)\text{ }\left[ \dfrac{d}{dx}\text{ }g(x) \right]\text{ }+\text{ }\left[ \dfrac{d}{dx}\text{ }f(x) \right]\text{ }g(x)\].
Then we need use the chain rule for differentiating function of function,
$\dfrac{d}{dx}f\left[ g(x) \right]=\dfrac{d}{dg(x)}f\left[ g(x) \right]\times \dfrac{d}{dx}g(x)$
By applying rules we have to apply the property of differentiation. Using these concepts we get the answer.
Complete step by step solution:
Let us first simplify the given expression.
Let's say that $y=\dfrac{\sec x+\tan x}{\sec x-\tan x}$.
Using $\sec \theta =\dfrac{1}{\cos \theta }$ and $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$, we get:
\[\Rightarrow \] $y=\dfrac{\dfrac{1}{\cos x}+\dfrac{\sin x}{\cos x}}{\dfrac{1}{\cos x}-\dfrac{\sin x}{\cos x}}$
\[\Rightarrow \] $y=\left( \dfrac{1+\sin x}{\cos x} \right)\times \left( \dfrac{\cos x}{1-\sin x} \right)$
\[\Rightarrow \] $y=\dfrac{1+\sin x}{1-\sin x}$
Which can also be written as:
\[\Rightarrow \] $y=(1+\sin x){{(1-\sin x)}^{-1}}$
Now, let us differentiate with respect to x.
Using the product rule of derivatives, we get:
\[\Rightarrow \] $\dfrac{dy}{dx}=(1+\sin x)\left[ \dfrac{d}{dx}{{(1-\sin x)}^{-1}} \right]+\left[ \dfrac{d}{dx}(1+\sin x) \right]{{(1-\sin x)}^{-1}}$
Using the chain rule of derivatives, we get:
\[\Rightarrow \] \[\dfrac{dy}{dx}=(1+\sin x)\left[ (-1){{(1-\sin x)}^{-2}}\dfrac{d}{dx}(1-\sin x) \right]+\left[ \dfrac{d}{dx}(1+\sin x) \right]{{(1-\sin x)}^{-1}}\]
Using $\dfrac{d}{dx}\sin x=\cos x$ and $\dfrac{d}{dx}k=0$, we get:
\[\Rightarrow \] \[\dfrac{dy}{dx}=(1+\sin x)(-1){{(1-\sin x)}^{-2}}(-\cos x)+\cos x{{(1-\sin x)}^{-1}}\]
Which can be written as:
\[\Rightarrow \] \[\dfrac{dy}{dx}=\dfrac{(1+\sin x)(\cos x)}{{{(1-\sin x)}^{2}}}+\dfrac{\cos x}{(1-\sin x)}\]
Separating the common factor $\cos x$, and adding by equating the denominators, we get:
\[\Rightarrow \] \[\dfrac{dy}{dx}=\cos x\left[ \dfrac{1+\sin x}{{{(1-\sin x)}^{2}}}+\dfrac{1-\sin x}{{{(1-\sin x)}^{2}}} \right]\]
\[\Rightarrow \] \[\dfrac{dy}{dx}=\dfrac{2\cos x}{{{(1-\sin x)}^{2}}}\], which is the required answer.
Note: The final answer can be modified in terms of other trigonometric functions, the resulting value being the same.
Derivatives of Trigonometric Functions:
$\dfrac{d}{dx}\sin x=\cos x$ $\dfrac{d}{dx}\cos x=-\sin x$
$\dfrac{d}{dx}\tan x={{\sec }^{2}}x$ $\dfrac{d}{dx}\cot x=-{{\csc }^{2}}x$
$\dfrac{d}{dx}\sec x=\tan x\sec x$ $\dfrac{d}{dx}\csc x=-\cot x\csc x$
\[\dfrac{d}{dx}\text{ }[f(x)\text{ }g(x)]\text{ }=\text{ }f(x)\text{ }\left[ \dfrac{d}{dx}\text{ }g(x) \right]\text{ }+\text{ }\left[ \dfrac{d}{dx}\text{ }f(x) \right]\text{ }g(x)\].
Then we need use the chain rule for differentiating function of function,
$\dfrac{d}{dx}f\left[ g(x) \right]=\dfrac{d}{dg(x)}f\left[ g(x) \right]\times \dfrac{d}{dx}g(x)$
By applying rules we have to apply the property of differentiation. Using these concepts we get the answer.
Complete step by step solution:
Let us first simplify the given expression.
Let's say that $y=\dfrac{\sec x+\tan x}{\sec x-\tan x}$.
Using $\sec \theta =\dfrac{1}{\cos \theta }$ and $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$, we get:
\[\Rightarrow \] $y=\dfrac{\dfrac{1}{\cos x}+\dfrac{\sin x}{\cos x}}{\dfrac{1}{\cos x}-\dfrac{\sin x}{\cos x}}$
\[\Rightarrow \] $y=\left( \dfrac{1+\sin x}{\cos x} \right)\times \left( \dfrac{\cos x}{1-\sin x} \right)$
\[\Rightarrow \] $y=\dfrac{1+\sin x}{1-\sin x}$
Which can also be written as:
\[\Rightarrow \] $y=(1+\sin x){{(1-\sin x)}^{-1}}$
Now, let us differentiate with respect to x.
Using the product rule of derivatives, we get:
\[\Rightarrow \] $\dfrac{dy}{dx}=(1+\sin x)\left[ \dfrac{d}{dx}{{(1-\sin x)}^{-1}} \right]+\left[ \dfrac{d}{dx}(1+\sin x) \right]{{(1-\sin x)}^{-1}}$
Using the chain rule of derivatives, we get:
\[\Rightarrow \] \[\dfrac{dy}{dx}=(1+\sin x)\left[ (-1){{(1-\sin x)}^{-2}}\dfrac{d}{dx}(1-\sin x) \right]+\left[ \dfrac{d}{dx}(1+\sin x) \right]{{(1-\sin x)}^{-1}}\]
Using $\dfrac{d}{dx}\sin x=\cos x$ and $\dfrac{d}{dx}k=0$, we get:
\[\Rightarrow \] \[\dfrac{dy}{dx}=(1+\sin x)(-1){{(1-\sin x)}^{-2}}(-\cos x)+\cos x{{(1-\sin x)}^{-1}}\]
Which can be written as:
\[\Rightarrow \] \[\dfrac{dy}{dx}=\dfrac{(1+\sin x)(\cos x)}{{{(1-\sin x)}^{2}}}+\dfrac{\cos x}{(1-\sin x)}\]
Separating the common factor $\cos x$, and adding by equating the denominators, we get:
\[\Rightarrow \] \[\dfrac{dy}{dx}=\cos x\left[ \dfrac{1+\sin x}{{{(1-\sin x)}^{2}}}+\dfrac{1-\sin x}{{{(1-\sin x)}^{2}}} \right]\]
\[\Rightarrow \] \[\dfrac{dy}{dx}=\dfrac{2\cos x}{{{(1-\sin x)}^{2}}}\], which is the required answer.
Note: The final answer can be modified in terms of other trigonometric functions, the resulting value being the same.
Derivatives of Trigonometric Functions:
$\dfrac{d}{dx}\sin x=\cos x$ $\dfrac{d}{dx}\cos x=-\sin x$
$\dfrac{d}{dx}\tan x={{\sec }^{2}}x$ $\dfrac{d}{dx}\cot x=-{{\csc }^{2}}x$
$\dfrac{d}{dx}\sec x=\tan x\sec x$ $\dfrac{d}{dx}\csc x=-\cot x\csc x$
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

