
Differentiate the following with respect to \[x\]: \[{e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\]
Answer
465.9k+ views
Hint: Here, we will find the differentiation of the given function with respect to the variable. We will find the derivative of all the functions separately. First, we will find the derivative of the exponential function and then the derivative of the exponential of the trigonometric function. Then we will simplify it further to get the required value.
Formula Used:
We will use the following formulas:
1. \[\dfrac{d}{{dx}}\left( {{e^x}} \right) = x{e^x}\]
2. \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
3. \[\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x\]
4. \[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\]
5. \[2\sin x\cos x = \sin 2x\]
Complete step-by-step answer:
Let the given function be \[y\].
So, we get \[y = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\]
Differentiating with respect to \[x\], we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {{e^{3{{\sin }^2}x - 2{{\cos }^2}x}}} \right)\]
By using the derivative formula \[\dfrac{d}{{dx}}\left( {{e^x}} \right) = x{e^x}\], we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}} \cdot \dfrac{d}{{dx}}\left( {3{{\sin }^2}x - 2{{\cos }^2}x} \right)\]
We know that \[{\sin ^2}x = {\left( {\sin x} \right)^2}\].
So, rewriting the above equation, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}} \cdot \left[ {3\dfrac{d}{{dx}}{{\left( {\sin x} \right)}^2} - 2\dfrac{d}{{dx}}{{\left( {\cos x} \right)}^2}} \right]\]
By using the derivative formula \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\], we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}} \cdot \left[ {3 \cdot 2\sin x \cdot \dfrac{d}{{dx}}\left( {\sin x} \right) - 2 \cdot 2\cos x\dfrac{d}{{dx}}\left( {\cos x} \right)} \right]\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\left[ {6\sin x \cdot \dfrac{d}{{dx}}\left( {\sin x} \right) - 4\cos x\dfrac{d}{{dx}}\left( {\cos x} \right)} \right]\]
By using the derivative formula \[\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x\] and \[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\] , we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\left[ {6\sin x \cdot \cos x - 4\cos x \cdot \left( { - \sin x} \right)} \right]\]
We know that the product of two negative integers is a positive integer. Therefore, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\left[ {6\sin x \cdot \cos x + 4\sin x \cdot \cos x} \right]\]
By adding the terms, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\left[ {10\sin x \cdot \cos x} \right]\]
By rewriting the terms in terms of the trigonometric identity, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\left[ {5 \cdot 2\sin x\cos x} \right]\]
Using the trigonometric formula, \[2\sin x\cos x = \sin 2x\], we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\left[ {5\sin 2x} \right]\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = 5\sin 2x \cdot {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\]
\[ \Rightarrow y' = 5\sin 2x \cdot {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\]
Therefore, the derivative of \[{e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\] is \[5\sin 2x \cdot {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\].
Note: We should know that if a function has two functions, then both the functions have to be differentiated separately. Differentiation is a method of finding the derivative the function and finding the rate of change of function with respect to one. Here we have found out the derivative of exponential function. Exponential function is a constant which is raised to some power. Exponential function is the inverse of logarithmic function.
Formula Used:
We will use the following formulas:
1. \[\dfrac{d}{{dx}}\left( {{e^x}} \right) = x{e^x}\]
2. \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
3. \[\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x\]
4. \[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\]
5. \[2\sin x\cos x = \sin 2x\]
Complete step-by-step answer:
Let the given function be \[y\].
So, we get \[y = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\]
Differentiating with respect to \[x\], we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {{e^{3{{\sin }^2}x - 2{{\cos }^2}x}}} \right)\]
By using the derivative formula \[\dfrac{d}{{dx}}\left( {{e^x}} \right) = x{e^x}\], we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}} \cdot \dfrac{d}{{dx}}\left( {3{{\sin }^2}x - 2{{\cos }^2}x} \right)\]
We know that \[{\sin ^2}x = {\left( {\sin x} \right)^2}\].
So, rewriting the above equation, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}} \cdot \left[ {3\dfrac{d}{{dx}}{{\left( {\sin x} \right)}^2} - 2\dfrac{d}{{dx}}{{\left( {\cos x} \right)}^2}} \right]\]
By using the derivative formula \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\], we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}} \cdot \left[ {3 \cdot 2\sin x \cdot \dfrac{d}{{dx}}\left( {\sin x} \right) - 2 \cdot 2\cos x\dfrac{d}{{dx}}\left( {\cos x} \right)} \right]\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\left[ {6\sin x \cdot \dfrac{d}{{dx}}\left( {\sin x} \right) - 4\cos x\dfrac{d}{{dx}}\left( {\cos x} \right)} \right]\]
By using the derivative formula \[\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x\] and \[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\] , we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\left[ {6\sin x \cdot \cos x - 4\cos x \cdot \left( { - \sin x} \right)} \right]\]
We know that the product of two negative integers is a positive integer. Therefore, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\left[ {6\sin x \cdot \cos x + 4\sin x \cdot \cos x} \right]\]
By adding the terms, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\left[ {10\sin x \cdot \cos x} \right]\]
By rewriting the terms in terms of the trigonometric identity, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\left[ {5 \cdot 2\sin x\cos x} \right]\]
Using the trigonometric formula, \[2\sin x\cos x = \sin 2x\], we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\left[ {5\sin 2x} \right]\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = 5\sin 2x \cdot {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\]
\[ \Rightarrow y' = 5\sin 2x \cdot {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\]
Therefore, the derivative of \[{e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\] is \[5\sin 2x \cdot {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\].
Note: We should know that if a function has two functions, then both the functions have to be differentiated separately. Differentiation is a method of finding the derivative the function and finding the rate of change of function with respect to one. Here we have found out the derivative of exponential function. Exponential function is a constant which is raised to some power. Exponential function is the inverse of logarithmic function.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE
