Answer
Verified
441.3k+ views
Hint: Here, we will find the differentiation of the given function with respect to the variable. We will find the derivative of all the functions separately. First, we will find the derivative of the exponential function and then the derivative of the exponential of the trigonometric function. Then we will simplify it further to get the required value.
Formula Used:
We will use the following formulas:
1. \[\dfrac{d}{{dx}}\left( {{e^x}} \right) = x{e^x}\]
2. \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
3. \[\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x\]
4. \[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\]
5. \[2\sin x\cos x = \sin 2x\]
Complete step-by-step answer:
Let the given function be \[y\].
So, we get \[y = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\]
Differentiating with respect to \[x\], we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {{e^{3{{\sin }^2}x - 2{{\cos }^2}x}}} \right)\]
By using the derivative formula \[\dfrac{d}{{dx}}\left( {{e^x}} \right) = x{e^x}\], we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}} \cdot \dfrac{d}{{dx}}\left( {3{{\sin }^2}x - 2{{\cos }^2}x} \right)\]
We know that \[{\sin ^2}x = {\left( {\sin x} \right)^2}\].
So, rewriting the above equation, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}} \cdot \left[ {3\dfrac{d}{{dx}}{{\left( {\sin x} \right)}^2} - 2\dfrac{d}{{dx}}{{\left( {\cos x} \right)}^2}} \right]\]
By using the derivative formula \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\], we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}} \cdot \left[ {3 \cdot 2\sin x \cdot \dfrac{d}{{dx}}\left( {\sin x} \right) - 2 \cdot 2\cos x\dfrac{d}{{dx}}\left( {\cos x} \right)} \right]\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\left[ {6\sin x \cdot \dfrac{d}{{dx}}\left( {\sin x} \right) - 4\cos x\dfrac{d}{{dx}}\left( {\cos x} \right)} \right]\]
By using the derivative formula \[\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x\] and \[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\] , we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\left[ {6\sin x \cdot \cos x - 4\cos x \cdot \left( { - \sin x} \right)} \right]\]
We know that the product of two negative integers is a positive integer. Therefore, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\left[ {6\sin x \cdot \cos x + 4\sin x \cdot \cos x} \right]\]
By adding the terms, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\left[ {10\sin x \cdot \cos x} \right]\]
By rewriting the terms in terms of the trigonometric identity, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\left[ {5 \cdot 2\sin x\cos x} \right]\]
Using the trigonometric formula, \[2\sin x\cos x = \sin 2x\], we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\left[ {5\sin 2x} \right]\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = 5\sin 2x \cdot {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\]
\[ \Rightarrow y' = 5\sin 2x \cdot {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\]
Therefore, the derivative of \[{e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\] is \[5\sin 2x \cdot {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\].
Note: We should know that if a function has two functions, then both the functions have to be differentiated separately. Differentiation is a method of finding the derivative the function and finding the rate of change of function with respect to one. Here we have found out the derivative of exponential function. Exponential function is a constant which is raised to some power. Exponential function is the inverse of logarithmic function.
Formula Used:
We will use the following formulas:
1. \[\dfrac{d}{{dx}}\left( {{e^x}} \right) = x{e^x}\]
2. \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
3. \[\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x\]
4. \[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\]
5. \[2\sin x\cos x = \sin 2x\]
Complete step-by-step answer:
Let the given function be \[y\].
So, we get \[y = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\]
Differentiating with respect to \[x\], we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {{e^{3{{\sin }^2}x - 2{{\cos }^2}x}}} \right)\]
By using the derivative formula \[\dfrac{d}{{dx}}\left( {{e^x}} \right) = x{e^x}\], we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}} \cdot \dfrac{d}{{dx}}\left( {3{{\sin }^2}x - 2{{\cos }^2}x} \right)\]
We know that \[{\sin ^2}x = {\left( {\sin x} \right)^2}\].
So, rewriting the above equation, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}} \cdot \left[ {3\dfrac{d}{{dx}}{{\left( {\sin x} \right)}^2} - 2\dfrac{d}{{dx}}{{\left( {\cos x} \right)}^2}} \right]\]
By using the derivative formula \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\], we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}} \cdot \left[ {3 \cdot 2\sin x \cdot \dfrac{d}{{dx}}\left( {\sin x} \right) - 2 \cdot 2\cos x\dfrac{d}{{dx}}\left( {\cos x} \right)} \right]\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\left[ {6\sin x \cdot \dfrac{d}{{dx}}\left( {\sin x} \right) - 4\cos x\dfrac{d}{{dx}}\left( {\cos x} \right)} \right]\]
By using the derivative formula \[\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x\] and \[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\] , we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\left[ {6\sin x \cdot \cos x - 4\cos x \cdot \left( { - \sin x} \right)} \right]\]
We know that the product of two negative integers is a positive integer. Therefore, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\left[ {6\sin x \cdot \cos x + 4\sin x \cdot \cos x} \right]\]
By adding the terms, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\left[ {10\sin x \cdot \cos x} \right]\]
By rewriting the terms in terms of the trigonometric identity, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\left[ {5 \cdot 2\sin x\cos x} \right]\]
Using the trigonometric formula, \[2\sin x\cos x = \sin 2x\], we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\left[ {5\sin 2x} \right]\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = 5\sin 2x \cdot {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\]
\[ \Rightarrow y' = 5\sin 2x \cdot {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\]
Therefore, the derivative of \[{e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\] is \[5\sin 2x \cdot {e^{3{{\sin }^2}x - 2{{\cos }^2}x}}\].
Note: We should know that if a function has two functions, then both the functions have to be differentiated separately. Differentiation is a method of finding the derivative the function and finding the rate of change of function with respect to one. Here we have found out the derivative of exponential function. Exponential function is a constant which is raised to some power. Exponential function is the inverse of logarithmic function.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE