Answer
Verified
460.8k+ views
Hint: We can use chain Rule and Product Rule to differentiate both sides. We assume that \[u = {x^2}\,\,\,\nu = x\,\,\log \,\,x\]. Thereafter, taking log both sides of both values and then we will differentiate the value with respect to x.
Complete step by step solution:
\[u = {x^x}\,\,\,\nu = \log \,x\]
\[u = {x^x}\,\]
Taking log on both sides, we will get
\[
u = {x^x}\, \\
\log u = \log {x^x} \\
\log u = x\log x \\
\] $\left( {\because \log \,{a^m} = m\log a} \right)$
Now differentiate both sides, we will get
\[\dfrac{d}{{dx}}\,\,\left( {\log \,\,u} \right) = \dfrac{d}{{dx}}\left( {x\log x} \right)\]
\[\dfrac{1}{u}\,\,\dfrac{{du}}{{dx}} = \dfrac{d}{x}\left( x \right)\,\,.\,\,\log x + x\,\,.\,\,\dfrac{d}{{dx}}\left( {\log x} \right)\,\,\,\left[ {Chain\,\,Rule} \right]\]
\[\dfrac{{du}}{{dx}} = \,\,u\left[ {\log \,x + \dfrac{x}{x}} \right]\]
As, we know that $u = {x^x}$
\[\dfrac{{du}}{{dx}} = \,\,{x^x}\left( {\log x + 1} \right)\] \[.......(i)\]
We will solve \[\nu = x\log x\] part
\[\nu = x\log x\]
\[\dfrac{d}{{dx}}\left( \nu \right) = \dfrac{{dx}}{{dx}}\left( {x\left( {\log x} \right)} \right)\,\,\,\left[ {{\text{Product}}\,\,{\text{Rule}}} \right]\]
\[\dfrac{{d\nu }}{{dx}} = x\dfrac{d}{{dx}}\left( {\log x} \right)\, + \log x\,\,.\,\,\dfrac{d}{{d\left( x \right)}}\left( x \right)\]
\[ = x\dfrac{1}{x} + \log \left( x \right).1\]
\[\dfrac{{d\nu }}{{dx}} = 1 + \log x\] $........(ii)$
Divide equation \[(i)\]and $(ii)$ , we have
\[
\dfrac{{du}}{{d\nu }} = \dfrac{{d\nu /dx}}{{d\nu /dx}} \\
= \dfrac{{{x^2}\left( {\log x + 1} \right)}}{{\left( {\log x + 1} \right)}} \\
\]
\[ = {x^x}\,\,Answer\]
Option (A) is correct
Note: Chain rule states that the derivative of $f\left[ {g\left( x \right)} \right]$ is${f^1}\left[ {g\left( x \right)} \right]{g^1}\left( x \right)$.
Product rule is also a formula of products used to find the derivatives of products of two or more functions.
Complete step by step solution:
\[u = {x^x}\,\,\,\nu = \log \,x\]
\[u = {x^x}\,\]
Taking log on both sides, we will get
\[
u = {x^x}\, \\
\log u = \log {x^x} \\
\log u = x\log x \\
\] $\left( {\because \log \,{a^m} = m\log a} \right)$
Now differentiate both sides, we will get
\[\dfrac{d}{{dx}}\,\,\left( {\log \,\,u} \right) = \dfrac{d}{{dx}}\left( {x\log x} \right)\]
\[\dfrac{1}{u}\,\,\dfrac{{du}}{{dx}} = \dfrac{d}{x}\left( x \right)\,\,.\,\,\log x + x\,\,.\,\,\dfrac{d}{{dx}}\left( {\log x} \right)\,\,\,\left[ {Chain\,\,Rule} \right]\]
\[\dfrac{{du}}{{dx}} = \,\,u\left[ {\log \,x + \dfrac{x}{x}} \right]\]
As, we know that $u = {x^x}$
\[\dfrac{{du}}{{dx}} = \,\,{x^x}\left( {\log x + 1} \right)\] \[.......(i)\]
We will solve \[\nu = x\log x\] part
\[\nu = x\log x\]
\[\dfrac{d}{{dx}}\left( \nu \right) = \dfrac{{dx}}{{dx}}\left( {x\left( {\log x} \right)} \right)\,\,\,\left[ {{\text{Product}}\,\,{\text{Rule}}} \right]\]
\[\dfrac{{d\nu }}{{dx}} = x\dfrac{d}{{dx}}\left( {\log x} \right)\, + \log x\,\,.\,\,\dfrac{d}{{d\left( x \right)}}\left( x \right)\]
\[ = x\dfrac{1}{x} + \log \left( x \right).1\]
\[\dfrac{{d\nu }}{{dx}} = 1 + \log x\] $........(ii)$
Divide equation \[(i)\]and $(ii)$ , we have
\[
\dfrac{{du}}{{d\nu }} = \dfrac{{d\nu /dx}}{{d\nu /dx}} \\
= \dfrac{{{x^2}\left( {\log x + 1} \right)}}{{\left( {\log x + 1} \right)}} \\
\]
\[ = {x^x}\,\,Answer\]
Option (A) is correct
Note: Chain rule states that the derivative of $f\left[ {g\left( x \right)} \right]$ is${f^1}\left[ {g\left( x \right)} \right]{g^1}\left( x \right)$.
Product rule is also a formula of products used to find the derivatives of products of two or more functions.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE