Discuss the applicability of Lagrange's mean value theorem for the function $f\left( x \right) = \left| x \right|$ on $\left[ { - 1,1} \right]$.
Answer
Verified
510.9k+ views
Hint: In this question, for applicability of Lagrange's Mean Value theorem on f(x) in interval $\left[ {a,b} \right]$, function must be continuous in $\left[ {a,b} \right]$ and differentiable in (a,b).
Complete step-by-step answer:
Now we define the function $f\left( x \right) = \left| x \right|$ on $\left[ { - 1,1} \right]$ as follows,
$
f\left( x \right) = - x,x \in \left[ { - 1,0} \right) \\
f\left( x \right) = x,x \in \left[ {0,1} \right] \\
$
Now let's examine continuity and differentiability of function at x=0 .
For continuity,
\[
{\text{Left hand limit,}}\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( { - x} \right) = 0 \\
{\text{Right hand limit,}}\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \left( x \right) = 0 \\
\]
Since, LHL=RHL, f(x) is continuous at x=0 and f(0)=0 .
For differentiability,
Left hand derivative
$
f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x - h} \right) - f\left( x \right)}}{{ - h}} \\
f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {0 - h} \right) - f\left( 0 \right)}}{{ - h}} \\
f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( { - h} \right) - 0}}{{ - h}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{ - \left( { - h} \right) - 0}}{{ - h}} = \mathop {\lim }\limits_{h \to 0} \dfrac{h}{{ - h}} = - 1 \\
$
Right hand derivative
$
f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h} \\
f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {0 + h} \right) - f\left( 0 \right)}}{h} \\
f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( h \right) - 0}}{h} = \mathop {\lim }\limits_{h \to 0} \dfrac{h}{h} = 1 \\
$
Since, $LHD \ne RHD$ , f(x) is not differentiable at x=0
For applicability of Lagrange's Mean Value theorem on f(x) in interval $\left[ { - 1,1} \right]$ , Function must be continuous in $\left[ { - 1,1} \right]$ and differentiable in (1,1) .
But the function is not differentiable at x=0 .
So, Lagrange's Mean Value theorem is not applicable for f(x) in interval $\left[ { - 1,1} \right]$.
Note: Whenever we face such types of problems we use some important points. First we define the function on different intervals then check the continuity and differentiability of the function on different intervals. If function be continuous and differentiable on interval then Lagrange's mean value theorem be applicable.
Complete step-by-step answer:
Now we define the function $f\left( x \right) = \left| x \right|$ on $\left[ { - 1,1} \right]$ as follows,
$
f\left( x \right) = - x,x \in \left[ { - 1,0} \right) \\
f\left( x \right) = x,x \in \left[ {0,1} \right] \\
$
Now let's examine continuity and differentiability of function at x=0 .
For continuity,
\[
{\text{Left hand limit,}}\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( { - x} \right) = 0 \\
{\text{Right hand limit,}}\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \left( x \right) = 0 \\
\]
Since, LHL=RHL, f(x) is continuous at x=0 and f(0)=0 .
For differentiability,
Left hand derivative
$
f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x - h} \right) - f\left( x \right)}}{{ - h}} \\
f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {0 - h} \right) - f\left( 0 \right)}}{{ - h}} \\
f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( { - h} \right) - 0}}{{ - h}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{ - \left( { - h} \right) - 0}}{{ - h}} = \mathop {\lim }\limits_{h \to 0} \dfrac{h}{{ - h}} = - 1 \\
$
Right hand derivative
$
f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h} \\
f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {0 + h} \right) - f\left( 0 \right)}}{h} \\
f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( h \right) - 0}}{h} = \mathop {\lim }\limits_{h \to 0} \dfrac{h}{h} = 1 \\
$
Since, $LHD \ne RHD$ , f(x) is not differentiable at x=0
For applicability of Lagrange's Mean Value theorem on f(x) in interval $\left[ { - 1,1} \right]$ , Function must be continuous in $\left[ { - 1,1} \right]$ and differentiable in (1,1) .
But the function is not differentiable at x=0 .
So, Lagrange's Mean Value theorem is not applicable for f(x) in interval $\left[ { - 1,1} \right]$.
Note: Whenever we face such types of problems we use some important points. First we define the function on different intervals then check the continuity and differentiability of the function on different intervals. If function be continuous and differentiable on interval then Lagrange's mean value theorem be applicable.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE