Dissolving 120g of urea (mol.wt.60) in 1000g of water gave a solution of density 1.15 g/mL. The molarity of the solution is:
A. 1.78 M
B. 2.00 M
C. 2.05 M
D. 2.22 M
Answer
Verified
120.6k+ views
Hint: To proceed in answering the question, we must recall the basic definition of molarity and we must also keep in mind the correlation of volume and density of a solution. Molarity is the number of moles of solute per liter of solution, which can be calculated using the following equation:
\[Molarity=\dfrac{Moles\,of\,solute}{Litres\,of\,solution}\]
Complete step by step solution:
To calculate the molarity of the solution, we first need to know the number of moles of solute (urea) in the solution.
\[No.\,of\,moles\,=\,\dfrac{Mass\,of\,urea\,in\,solution}{Molecular\,mass\,of\,urea}=\dfrac{120}{60}=\,2\,moles\]
We know,
The total mass of the solution = mass of solute + mass of solvent
= mass of urea + mass of water
= 120g + 1000g = 1120g
Given: Density of solution = 1.15 g/mL; which means every 1mL of the solution has mass of 1.15g.
We can calculate the volume of the solution from the mass and density of the solution.
We know,
\[Volume\,=\dfrac{Mass}{Density}\,=\dfrac{1120\,g}{1.15\,g/mL}\,=\,973.9\,mL\]
Now we see,
In 973.9 mL of solution we have = 2 moles of Urea
Or, in 1 mL of solution we have = \[\dfrac{2}{973.9}\] moles of Urea
Or, in 1000 mL or 1L of solution, we have =\[\dfrac{2}{973.9}\times 1000\,=\,2.0535\]moles of urea.
The Molarity of the solution is 2.05M (Option C).
Additional Information:
Molarity, molality, and normality are all units of concentration. Molarity is defined as the number of moles of solute per liter of solution. Molality is defined as the number of moles of solute per kilogram of solvent and Normality is defined as the number of equivalents per liter of solution. We should use Molality instead of Molarity in experiments involving significant temperature changes. This is because as the volume of a solution increases with temperature, heating causes molarity to decrease; however, since molality is based on mass rather than volume, molality remains unchanged.
Note: Molar concentration can be used to convert between the mass or moles of solute and the volume of the solution.
Molarity is a measurement of the moles in the total volume of the solution, whereas Molality is a measurement of the moles in relationship to the mass of the solvent. Hence, the two should never be confused.
\[Molarity=\dfrac{Moles\,of\,solute}{Litres\,of\,solution}\]
Complete step by step solution:
To calculate the molarity of the solution, we first need to know the number of moles of solute (urea) in the solution.
\[No.\,of\,moles\,=\,\dfrac{Mass\,of\,urea\,in\,solution}{Molecular\,mass\,of\,urea}=\dfrac{120}{60}=\,2\,moles\]
We know,
The total mass of the solution = mass of solute + mass of solvent
= mass of urea + mass of water
= 120g + 1000g = 1120g
Given: Density of solution = 1.15 g/mL; which means every 1mL of the solution has mass of 1.15g.
We can calculate the volume of the solution from the mass and density of the solution.
We know,
\[Volume\,=\dfrac{Mass}{Density}\,=\dfrac{1120\,g}{1.15\,g/mL}\,=\,973.9\,mL\]
Now we see,
In 973.9 mL of solution we have = 2 moles of Urea
Or, in 1 mL of solution we have = \[\dfrac{2}{973.9}\] moles of Urea
Or, in 1000 mL or 1L of solution, we have =\[\dfrac{2}{973.9}\times 1000\,=\,2.0535\]moles of urea.
The Molarity of the solution is 2.05M (Option C).
Additional Information:
Molarity, molality, and normality are all units of concentration. Molarity is defined as the number of moles of solute per liter of solution. Molality is defined as the number of moles of solute per kilogram of solvent and Normality is defined as the number of equivalents per liter of solution. We should use Molality instead of Molarity in experiments involving significant temperature changes. This is because as the volume of a solution increases with temperature, heating causes molarity to decrease; however, since molality is based on mass rather than volume, molality remains unchanged.
Note: Molar concentration can be used to convert between the mass or moles of solute and the volume of the solution.
Molarity is a measurement of the moles in the total volume of the solution, whereas Molality is a measurement of the moles in relationship to the mass of the solvent. Hence, the two should never be confused.
Recently Updated Pages
Types of Solutions - Solution in Chemistry
Difference Between Crystalline and Amorphous Solid
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
Sign up for JEE Main 2025 Live Classes - Vedantu
JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address
Trending doubts
JEE Mains 2025: Check Important Dates, Syllabus, Exam Pattern, Fee and Updates
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Chemistry Exam Pattern 2025
Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction
NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics
NCERT Solutions for Class 11 Chemistry Chapter 8 Organic Chemistry
NCERT Solutions for Class 11 Chemistry Chapter 6 Equilibrium
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs