What is the distance between the parallel lines 3x + 4y + 7 = 0 and 3x + 4y – 5 = 0?
(a). \[\dfrac{2}{5}\]
(b). \[\dfrac{{12}}{5}\]
(c). \[\dfrac{5}{{12}}\]
(d). \[\dfrac{3}{5}\]
Answer
Verified
500.7k+ views
Hint: The distance between two parallel lines \[ax + by + {c_1} = 0\] and \[ax + by + {c_2} = 0\] is given by the formula \[d = \dfrac{{|{c_1} - {c_2}|}}{{\sqrt {{a^2} + {b^2}} }}\]. Use this formula to find the distance between the given lines.
Complete step-by-step answer:
Two lines are said to be parallel if they do not intersect at any finite point in the space. They always maintain the same distance between them.
The equations of the parallel lines have the x and y coefficient as proportional to each other.
For finding the distance between the two parallel lines, we first express the two equations such that the coefficients of x and y are equal.
We have the equations of two lines as follows:
3x + 4y +7 = 0
3x + 4y – 5 = 0
Hence, we have both equations such that the x and y coefficients are equal.
Now, we use the formula for calculating the distance between two parallel lines \[ax + by + {c_1} = 0\] and \[ax + by + {c_2} = 0\] given as follows:
\[d = \dfrac{{|{c_1} - {c_2}|}}{{\sqrt {{a^2} + {b^2}} }}\]
From the equations of the lines, we have:
\[{c_1} = 7\]
\[{c_2} = - 5\]
a = 3
b = 4
Then, we have:
\[d = \dfrac{{|7 - ( - 5)|}}{{\sqrt {{3^2} + {4^2}} }}\]
Simplifying, we have:
\[d = \dfrac{{|7 + 5|}}{{\sqrt {9 + 16} }}\]
\[d = \dfrac{{|12|}}{{\sqrt {25} }}\]
We know that the square root of 25 is 5. Hence, we have:
\[d = \dfrac{{12}}{5}\]
Hence, the correct answer is option (b).
Note: Note that you should take care of the negative sign in the equation 3x + 4y – 5 = 0 and include it while calculating the distance, otherwise, your answer will be \[\dfrac{2}{5}\], option (a), which is wrong.
Complete step-by-step answer:
Two lines are said to be parallel if they do not intersect at any finite point in the space. They always maintain the same distance between them.
The equations of the parallel lines have the x and y coefficient as proportional to each other.
For finding the distance between the two parallel lines, we first express the two equations such that the coefficients of x and y are equal.
We have the equations of two lines as follows:
3x + 4y +7 = 0
3x + 4y – 5 = 0
Hence, we have both equations such that the x and y coefficients are equal.
Now, we use the formula for calculating the distance between two parallel lines \[ax + by + {c_1} = 0\] and \[ax + by + {c_2} = 0\] given as follows:
\[d = \dfrac{{|{c_1} - {c_2}|}}{{\sqrt {{a^2} + {b^2}} }}\]
From the equations of the lines, we have:
\[{c_1} = 7\]
\[{c_2} = - 5\]
a = 3
b = 4
Then, we have:
\[d = \dfrac{{|7 - ( - 5)|}}{{\sqrt {{3^2} + {4^2}} }}\]
Simplifying, we have:
\[d = \dfrac{{|7 + 5|}}{{\sqrt {9 + 16} }}\]
\[d = \dfrac{{|12|}}{{\sqrt {25} }}\]
We know that the square root of 25 is 5. Hence, we have:
\[d = \dfrac{{12}}{5}\]
Hence, the correct answer is option (b).
Note: Note that you should take care of the negative sign in the equation 3x + 4y – 5 = 0 and include it while calculating the distance, otherwise, your answer will be \[\dfrac{2}{5}\], option (a), which is wrong.
Recently Updated Pages
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Draw a labelled sketch of the human eye class 12 physics CBSE
What is a transformer Explain the principle construction class 12 physics CBSE
How much time does it take to bleed after eating p class 12 biology CBSE
What are the major means of transport Explain each class 12 social science CBSE