Answer
Verified
491.4k+ views
Hint: The distance between two parallel lines \[ax + by + {c_1} = 0\] and \[ax + by + {c_2} = 0\] is given by the formula \[d = \dfrac{{|{c_1} - {c_2}|}}{{\sqrt {{a^2} + {b^2}} }}\]. Use this formula to find the distance between the given lines.
Complete step-by-step answer:
Two lines are said to be parallel if they do not intersect at any finite point in the space. They always maintain the same distance between them.
The equations of the parallel lines have the x and y coefficient as proportional to each other.
For finding the distance between the two parallel lines, we first express the two equations such that the coefficients of x and y are equal.
We have the equations of two lines as follows:
3x + 4y +7 = 0
3x + 4y – 5 = 0
Hence, we have both equations such that the x and y coefficients are equal.
Now, we use the formula for calculating the distance between two parallel lines \[ax + by + {c_1} = 0\] and \[ax + by + {c_2} = 0\] given as follows:
\[d = \dfrac{{|{c_1} - {c_2}|}}{{\sqrt {{a^2} + {b^2}} }}\]
From the equations of the lines, we have:
\[{c_1} = 7\]
\[{c_2} = - 5\]
a = 3
b = 4
Then, we have:
\[d = \dfrac{{|7 - ( - 5)|}}{{\sqrt {{3^2} + {4^2}} }}\]
Simplifying, we have:
\[d = \dfrac{{|7 + 5|}}{{\sqrt {9 + 16} }}\]
\[d = \dfrac{{|12|}}{{\sqrt {25} }}\]
We know that the square root of 25 is 5. Hence, we have:
\[d = \dfrac{{12}}{5}\]
Hence, the correct answer is option (b).
Note: Note that you should take care of the negative sign in the equation 3x + 4y – 5 = 0 and include it while calculating the distance, otherwise, your answer will be \[\dfrac{2}{5}\], option (a), which is wrong.
Complete step-by-step answer:
Two lines are said to be parallel if they do not intersect at any finite point in the space. They always maintain the same distance between them.
The equations of the parallel lines have the x and y coefficient as proportional to each other.
For finding the distance between the two parallel lines, we first express the two equations such that the coefficients of x and y are equal.
We have the equations of two lines as follows:
3x + 4y +7 = 0
3x + 4y – 5 = 0
Hence, we have both equations such that the x and y coefficients are equal.
Now, we use the formula for calculating the distance between two parallel lines \[ax + by + {c_1} = 0\] and \[ax + by + {c_2} = 0\] given as follows:
\[d = \dfrac{{|{c_1} - {c_2}|}}{{\sqrt {{a^2} + {b^2}} }}\]
From the equations of the lines, we have:
\[{c_1} = 7\]
\[{c_2} = - 5\]
a = 3
b = 4
Then, we have:
\[d = \dfrac{{|7 - ( - 5)|}}{{\sqrt {{3^2} + {4^2}} }}\]
Simplifying, we have:
\[d = \dfrac{{|7 + 5|}}{{\sqrt {9 + 16} }}\]
\[d = \dfrac{{|12|}}{{\sqrt {25} }}\]
We know that the square root of 25 is 5. Hence, we have:
\[d = \dfrac{{12}}{5}\]
Hence, the correct answer is option (b).
Note: Note that you should take care of the negative sign in the equation 3x + 4y – 5 = 0 and include it while calculating the distance, otherwise, your answer will be \[\dfrac{2}{5}\], option (a), which is wrong.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE