Answer
Verified
449.7k+ views
Hint: In this question, we need to find the distance of the point (p,q,r) from the x axis. For this, we will evaluate the point on the x axis which is perpendicular to (p,q,r) and then find the distance between two points obtained. Distance between two points $\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)\text{ and }\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right)$ is given by \[\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}+{{\left( {{z}_{2}}-{{z}_{1}} \right)}^{2}}}\].
Complete step-by-step solution
Here, we need to find the distance of the point (p,q,r) from the x-axis. Our diagram looks like this,
Let us suppose B as point (p,q,r) and let us suppose the point A on the x-axis is perpendicular from (p,q,r). As we know, a point on the x-axis does not have any value of y coordinate and z coordinate. Hence, any point A on the x-axis will have y coordinate and z coordinate as o. Since A is perpendicular to (p,q,r) so x coordinate will be p only. Hence point A will be (p,0,0). So, now we need to find the distance between B(p,q,r) and A(p,0,0).
As we know, distance between two points $\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)\text{ and }\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right)$ is given by \[d=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}+{{\left( {{z}_{2}}-{{z}_{1}} \right)}^{2}}}\].
So here ${{x}_{1}}$ is equal to p, ${{x}_{2}}$ is equal to p, ${{y}_{1}}$ is equal to q, ${{y}_{2}}$ is equal to 0, ${{z}_{1}}$ is equal to r and ${{z}_{2}}$ is equal to 0.
Hence, distance between B(p,q,r) and A(p,0,0) becomes,
\[\begin{align}
& \Rightarrow d=\sqrt{{{\left( p-p \right)}^{2}}+{{\left( q-0 \right)}^{2}}+{{\left( r-0 \right)}^{2}}} \\
& \Rightarrow d=\sqrt{0+{{q}^{2}}+{{r}^{2}}} \\
& \Rightarrow d=\sqrt{{{q}^{2}}+{{r}^{2}}} \\
\end{align}\]
Hence, the distance between point (p,q,r) and x axis is $\sqrt{{{q}^{2}}+{{r}^{2}}}$.
Note: Students should carefully find the coordinates of the point on the x-axis from which distance will be measured. Remember that, distance from any point to a line or plane is equal to the distance between the point and the foot of the perpendicular on the plane (or line). Students should note that we can take ${{y}_{1}}$ as 0 and ${{y}_{2}}$ as q also. Similarly, ${{z}_{1}}$ as 0 and ${{z}_{2}}$ as “r” also. It will result in the same because terms will be squared and we know that the distance from A to B is equal to the distance from B to A.
Complete step-by-step solution
Here, we need to find the distance of the point (p,q,r) from the x-axis. Our diagram looks like this,
Let us suppose B as point (p,q,r) and let us suppose the point A on the x-axis is perpendicular from (p,q,r). As we know, a point on the x-axis does not have any value of y coordinate and z coordinate. Hence, any point A on the x-axis will have y coordinate and z coordinate as o. Since A is perpendicular to (p,q,r) so x coordinate will be p only. Hence point A will be (p,0,0). So, now we need to find the distance between B(p,q,r) and A(p,0,0).
As we know, distance between two points $\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)\text{ and }\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right)$ is given by \[d=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}+{{\left( {{z}_{2}}-{{z}_{1}} \right)}^{2}}}\].
So here ${{x}_{1}}$ is equal to p, ${{x}_{2}}$ is equal to p, ${{y}_{1}}$ is equal to q, ${{y}_{2}}$ is equal to 0, ${{z}_{1}}$ is equal to r and ${{z}_{2}}$ is equal to 0.
Hence, distance between B(p,q,r) and A(p,0,0) becomes,
\[\begin{align}
& \Rightarrow d=\sqrt{{{\left( p-p \right)}^{2}}+{{\left( q-0 \right)}^{2}}+{{\left( r-0 \right)}^{2}}} \\
& \Rightarrow d=\sqrt{0+{{q}^{2}}+{{r}^{2}}} \\
& \Rightarrow d=\sqrt{{{q}^{2}}+{{r}^{2}}} \\
\end{align}\]
Hence, the distance between point (p,q,r) and x axis is $\sqrt{{{q}^{2}}+{{r}^{2}}}$.
Note: Students should carefully find the coordinates of the point on the x-axis from which distance will be measured. Remember that, distance from any point to a line or plane is equal to the distance between the point and the foot of the perpendicular on the plane (or line). Students should note that we can take ${{y}_{1}}$ as 0 and ${{y}_{2}}$ as q also. Similarly, ${{z}_{1}}$ as 0 and ${{z}_{2}}$ as “r” also. It will result in the same because terms will be squared and we know that the distance from A to B is equal to the distance from B to A.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE