
Divide 24 in three parts such that they are in AP and their product is 440.
Answer
557.1k+ views
Hint:
As given in the question the three parts are in AP then let the three parts of 24 is $a - d, a, a + d$. Then submission of all three parts is equal to 24 from here we will calculate a. then the product of three parts is 440 from this we will calculate d.
Complete step by step solution:
Given three parts of 24 is in AP then let us assume three numbers to be $a - d, a, a + d$
So, $a - d + a + a + d = 24$
Therefore $a = 8$
Now, product of all three parts are 440 then
$\left( {a - d} \right) \times \left( a \right) \times \left( {a + d} \right) = 440$
Substituting $a = 8$
$\left( {8 - d} \right) \times \left( 8 \right) \times \left( {8 + d} \right) = 440$
We know that ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$
\[\left( {{8^2} - {d^2}} \right) = 55\]
${d^2} = 64 - 55 = 9$
Taking root on both side we get
$d = 3$
So, three parts of 24 are 5, 8, 11.
Note:
For consecutive three terms to be in AP $a - d,a,a + d$
For 4 consecutive terms in AP =$a - 2d,a - d,a + d,a + 2d$ and so one …
Where a is the 1st term of AP and d is the common difference
As given in the question the three parts are in AP then let the three parts of 24 is $a - d, a, a + d$. Then submission of all three parts is equal to 24 from here we will calculate a. then the product of three parts is 440 from this we will calculate d.
Complete step by step solution:
Given three parts of 24 is in AP then let us assume three numbers to be $a - d, a, a + d$
So, $a - d + a + a + d = 24$
Therefore $a = 8$
Now, product of all three parts are 440 then
$\left( {a - d} \right) \times \left( a \right) \times \left( {a + d} \right) = 440$
Substituting $a = 8$
$\left( {8 - d} \right) \times \left( 8 \right) \times \left( {8 + d} \right) = 440$
We know that ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$
\[\left( {{8^2} - {d^2}} \right) = 55\]
${d^2} = 64 - 55 = 9$
Taking root on both side we get
$d = 3$
So, three parts of 24 are 5, 8, 11.
Note:
For consecutive three terms to be in AP $a - d,a,a + d$
For 4 consecutive terms in AP =$a - 2d,a - d,a + d,a + 2d$ and so one …
Where a is the 1st term of AP and d is the common difference
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

