Answer
Verified
441.3k+ views
Hint: Here, we will first write the given statement mathematically by assuming the three parts to be some variable. Then we will add all the parts and equate it to 240. We will use the mathematical equation formed by us to substitute the values of the second and third parts in terms of the first part. Hence, we will find the value of one variable. Substituting further, we will get the value of each part and hence, we will be able to find the required answer.
Complete step-by-step answer:
Let the three parts be \[a,b\] and \[c\].
Now, according to the question,
The number 240 is divided into three parts so that \[\dfrac{1}{3}\] of the first, \[\dfrac{1}{4}\] of the second and \[\dfrac{1}{5}\] of the third part are equal.
Hence, if the first part is \[a\] , second part is \[b\] and the third part is \[c\], then, we can say that,
\[\dfrac{1}{3}\] of \[a\] is equal to \[\dfrac{1}{4}\] of \[b\] is equal to \[\dfrac{1}{5}\] of \[c\]
Now, writing this mathematically, we get,
\[ \Rightarrow \dfrac{1}{3}a = \dfrac{1}{4}b = \dfrac{1}{5}c\]…………………………….. \[\left( 1 \right)\]
Now, we will write every part in terms of \[a\].
Hence, the first part will remain the same, i.e. \[a\]
From equation \[\left( 1 \right)\] , we can say that,
\[\dfrac{a}{3} = \dfrac{b}{4}\]
Hence, by cross multiplying,
\[ \Rightarrow b = \dfrac{{4a}}{3}\]
Therefore, the second part \[b = \dfrac{{4a}}{3}\]………………………… \[\left( 2 \right)\]
Again, from equation \[\left( 1 \right)\], we get
\[\dfrac{a}{3} = \dfrac{c}{5}\]
Hence, by cross multiplying,
\[ \Rightarrow c = \dfrac{{5a}}{3}\]
Therefore, the third part \[c = \dfrac{{5a}}{3}\]………………………………… \[\left( 3 \right)\]
Now, since we have divided the number 240 into three parts i.e. \[a,b\] and \[c\].
Hence, the summation of these parts will give us the number 240
\[a + b + c = 240\]
Here, substituting \[b = \dfrac{{4a}}{3}\] and \[c = \dfrac{{5a}}{3}\] from \[\left( 2 \right)\] and \[\left( 3 \right)\], we can write this as:
\[ \Rightarrow a + \dfrac{{4a}}{3} + \dfrac{{5a}}{3} = 240\]
Now, taking the LCM as 3 in the LHS,
\[ \Rightarrow \dfrac{{3a + 4a + 5a}}{3} = 240\]
\[ \Rightarrow \dfrac{{12a}}{3} = 240\]
Now, solving further, we get,
\[ \Rightarrow 4a = 240\]
Dividing both sides by 4,
\[ \Rightarrow a = 60\]
Therefore, the first part \[a = 60\]
Hence, the second part \[b = \dfrac{{4a}}{3} = \dfrac{{4 \times 60}}{3} = 4 \times 20 = 80\]
And, the third part \[c = \dfrac{{5a}}{3} = \dfrac{{5 \times 60}}{3} = 5 \times 20 = 100\]
Therefore, we should divide 240 into 60, 80 and 100 if we want that \[\dfrac{1}{3}\] of the first, \[\dfrac{1}{4}\] of the second and \[\dfrac{1}{5}\] of the third part are equal.
Hence, this is the required answer.
Note: In order to check whether we have divided the given number correctly or not, we can substitute the values in \[\left( 1 \right)\] i.e.
\[\dfrac{1}{3}a = \dfrac{1}{4}b = \dfrac{1}{5}c\]
This is the statement which is required to be proved.
Hence, if the three parts, in which we have divided 240, satisfies this equality, then our answer is correct.
Therefore, substituting \[a = 60\] , \[b = 80\] and \[c = 100\] , we get,
\[\dfrac{1}{3} \times 60 = \dfrac{1}{4} \times 80 = \dfrac{1}{5} \times 100\]
\[ \Rightarrow 20 = 20 = 20\]
Clearly, they are equal.
Hence, it is proved that 240 should be divided as 60, 80 and 100 if we want that \[\dfrac{1}{3}\] of the first, \[\dfrac{1}{4}\] of the second, and \[\dfrac{1}{5}\] of the third part are equal.
Hence, this is the required answer.
Complete step-by-step answer:
Let the three parts be \[a,b\] and \[c\].
Now, according to the question,
The number 240 is divided into three parts so that \[\dfrac{1}{3}\] of the first, \[\dfrac{1}{4}\] of the second and \[\dfrac{1}{5}\] of the third part are equal.
Hence, if the first part is \[a\] , second part is \[b\] and the third part is \[c\], then, we can say that,
\[\dfrac{1}{3}\] of \[a\] is equal to \[\dfrac{1}{4}\] of \[b\] is equal to \[\dfrac{1}{5}\] of \[c\]
Now, writing this mathematically, we get,
\[ \Rightarrow \dfrac{1}{3}a = \dfrac{1}{4}b = \dfrac{1}{5}c\]…………………………….. \[\left( 1 \right)\]
Now, we will write every part in terms of \[a\].
Hence, the first part will remain the same, i.e. \[a\]
From equation \[\left( 1 \right)\] , we can say that,
\[\dfrac{a}{3} = \dfrac{b}{4}\]
Hence, by cross multiplying,
\[ \Rightarrow b = \dfrac{{4a}}{3}\]
Therefore, the second part \[b = \dfrac{{4a}}{3}\]………………………… \[\left( 2 \right)\]
Again, from equation \[\left( 1 \right)\], we get
\[\dfrac{a}{3} = \dfrac{c}{5}\]
Hence, by cross multiplying,
\[ \Rightarrow c = \dfrac{{5a}}{3}\]
Therefore, the third part \[c = \dfrac{{5a}}{3}\]………………………………… \[\left( 3 \right)\]
Now, since we have divided the number 240 into three parts i.e. \[a,b\] and \[c\].
Hence, the summation of these parts will give us the number 240
\[a + b + c = 240\]
Here, substituting \[b = \dfrac{{4a}}{3}\] and \[c = \dfrac{{5a}}{3}\] from \[\left( 2 \right)\] and \[\left( 3 \right)\], we can write this as:
\[ \Rightarrow a + \dfrac{{4a}}{3} + \dfrac{{5a}}{3} = 240\]
Now, taking the LCM as 3 in the LHS,
\[ \Rightarrow \dfrac{{3a + 4a + 5a}}{3} = 240\]
\[ \Rightarrow \dfrac{{12a}}{3} = 240\]
Now, solving further, we get,
\[ \Rightarrow 4a = 240\]
Dividing both sides by 4,
\[ \Rightarrow a = 60\]
Therefore, the first part \[a = 60\]
Hence, the second part \[b = \dfrac{{4a}}{3} = \dfrac{{4 \times 60}}{3} = 4 \times 20 = 80\]
And, the third part \[c = \dfrac{{5a}}{3} = \dfrac{{5 \times 60}}{3} = 5 \times 20 = 100\]
Therefore, we should divide 240 into 60, 80 and 100 if we want that \[\dfrac{1}{3}\] of the first, \[\dfrac{1}{4}\] of the second and \[\dfrac{1}{5}\] of the third part are equal.
Hence, this is the required answer.
Note: In order to check whether we have divided the given number correctly or not, we can substitute the values in \[\left( 1 \right)\] i.e.
\[\dfrac{1}{3}a = \dfrac{1}{4}b = \dfrac{1}{5}c\]
This is the statement which is required to be proved.
Hence, if the three parts, in which we have divided 240, satisfies this equality, then our answer is correct.
Therefore, substituting \[a = 60\] , \[b = 80\] and \[c = 100\] , we get,
\[\dfrac{1}{3} \times 60 = \dfrac{1}{4} \times 80 = \dfrac{1}{5} \times 100\]
\[ \Rightarrow 20 = 20 = 20\]
Clearly, they are equal.
Hence, it is proved that 240 should be divided as 60, 80 and 100 if we want that \[\dfrac{1}{3}\] of the first, \[\dfrac{1}{4}\] of the second, and \[\dfrac{1}{5}\] of the third part are equal.
Hence, this is the required answer.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE