Answer
Verified
428.4k+ views
Hint:For simplifying the original equation , firstly used logarithm property
$\log a + \log b = \log ab$ then take base twenty seven exponential of both sides of the equation, then apply the logarithm formula ${b^{{{\log }_b}a}} = a$ to simplify the given equation .
Formula used:
We used logarithm properties i.e.
$\log a + \log b = \log (ab)$ ,
${b^{{{\log }_b}a}} = a$
and
We also used quadratic formula i.e.,
$\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Complete solution step by step:
It is given that ,
${\log _{27}}x = 1 - {\log _{27}}(x - 0.4)$ ,
We have to solve for $x$ .
We can manipulate the above equation as ,
${\log _{27}}x + {\log _{27}}(x - 0.4) = 1$
Now using logarithm property $\log a + \log b = \log ab$ ,
We will get,
${\log _{27}}x(x - 0.4) = 1$
Now , by assuming the base of the logarithm to be $27$ ,then take the base $27$ exponential of both sides of the equation, we will get the following result ,
For equation one ,
${27^{{{\log }_{27}}\left( {x(x - 0.4} \right)}} = {27^1}$
By applying the logarithm formula ${b^{{{\log }_b}a}} = a$ . we will get the following result ,
$x(x - 0.4) = 27$
Or
$
{x^2} - 0.4x - 27 = 0 \\
or \\
10{x^2} - 4x - 270 = 0 \\
$
For finding roots of the original equation, we have to use quadratic formula i.e.,
$\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Now identify $a,b,c$ from the original equation given below,
$ \Rightarrow 10{x^2} - 4x - 270 = 0$
$
\Rightarrow a = 10 \\
\Rightarrow b = - 4 \\
\Rightarrow c = - 270 \\
$
Put these values into the formula of finding the roots of quadratic equations,
$x = \dfrac{{4 \pm \sqrt {{4^2} - 4*10*( - 270)} }}{{2*10}}$
After simplifying and by evaluating exponents and square root of the above equation we get the following simplified expression,
$x = \dfrac{{4 \pm 104}}{{20}}$
To find the roots of the equations , separate the particular equation into its corresponding parts : one part with the plus sign and the other with the minus sign ,
$
\Rightarrow {x_1} = \dfrac{{4 + 104}}{{20}} \\
and \\
\Rightarrow {x_2} = \dfrac{{4 - 104}}{{20}} \\
$
Simplify and then isolate $x$ to find its corresponding solutions!
$
\Rightarrow {x_1} = 5.4 \\
and \\
\Rightarrow {x_2} = - 5 \\
$
Now recall that the logarithm function says $\log x$ is only defined when $x$ is greater than zero.
Therefore, in our original equation ${\log _{27}}x = 1 - {\log _{27}}(x - 0.4)$ ,
Here,
$
(x - 0.4) > 0 \\
and \\
(x) > 0 \\
$
Now after evaluating both the values, $ - 5$ is rejected because it is less than zero. While $5.4$ is greater than zero and $5.4 - 0.4 > 0$ .
Therefore, we have our solution i.e., $5.4$ .
Note: The logarithm function says $\log x$ is only defined when $x$ is greater than zero. While defining logarithm function one should remember that the base of the log must be a positive real number and not equals to one . At the end we must recall that the logarithm function says $\log x$ is only defined when $x$ is greater than zero. While performing logarithm properties we have to remember certain conditions , our end result must satisfy the domain of that logarithm .
$\log a + \log b = \log ab$ then take base twenty seven exponential of both sides of the equation, then apply the logarithm formula ${b^{{{\log }_b}a}} = a$ to simplify the given equation .
Formula used:
We used logarithm properties i.e.
$\log a + \log b = \log (ab)$ ,
${b^{{{\log }_b}a}} = a$
and
We also used quadratic formula i.e.,
$\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Complete solution step by step:
It is given that ,
${\log _{27}}x = 1 - {\log _{27}}(x - 0.4)$ ,
We have to solve for $x$ .
We can manipulate the above equation as ,
${\log _{27}}x + {\log _{27}}(x - 0.4) = 1$
Now using logarithm property $\log a + \log b = \log ab$ ,
We will get,
${\log _{27}}x(x - 0.4) = 1$
Now , by assuming the base of the logarithm to be $27$ ,then take the base $27$ exponential of both sides of the equation, we will get the following result ,
For equation one ,
${27^{{{\log }_{27}}\left( {x(x - 0.4} \right)}} = {27^1}$
By applying the logarithm formula ${b^{{{\log }_b}a}} = a$ . we will get the following result ,
$x(x - 0.4) = 27$
Or
$
{x^2} - 0.4x - 27 = 0 \\
or \\
10{x^2} - 4x - 270 = 0 \\
$
For finding roots of the original equation, we have to use quadratic formula i.e.,
$\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Now identify $a,b,c$ from the original equation given below,
$ \Rightarrow 10{x^2} - 4x - 270 = 0$
$
\Rightarrow a = 10 \\
\Rightarrow b = - 4 \\
\Rightarrow c = - 270 \\
$
Put these values into the formula of finding the roots of quadratic equations,
$x = \dfrac{{4 \pm \sqrt {{4^2} - 4*10*( - 270)} }}{{2*10}}$
After simplifying and by evaluating exponents and square root of the above equation we get the following simplified expression,
$x = \dfrac{{4 \pm 104}}{{20}}$
To find the roots of the equations , separate the particular equation into its corresponding parts : one part with the plus sign and the other with the minus sign ,
$
\Rightarrow {x_1} = \dfrac{{4 + 104}}{{20}} \\
and \\
\Rightarrow {x_2} = \dfrac{{4 - 104}}{{20}} \\
$
Simplify and then isolate $x$ to find its corresponding solutions!
$
\Rightarrow {x_1} = 5.4 \\
and \\
\Rightarrow {x_2} = - 5 \\
$
Now recall that the logarithm function says $\log x$ is only defined when $x$ is greater than zero.
Therefore, in our original equation ${\log _{27}}x = 1 - {\log _{27}}(x - 0.4)$ ,
Here,
$
(x - 0.4) > 0 \\
and \\
(x) > 0 \\
$
Now after evaluating both the values, $ - 5$ is rejected because it is less than zero. While $5.4$ is greater than zero and $5.4 - 0.4 > 0$ .
Therefore, we have our solution i.e., $5.4$ .
Note: The logarithm function says $\log x$ is only defined when $x$ is greater than zero. While defining logarithm function one should remember that the base of the log must be a positive real number and not equals to one . At the end we must recall that the logarithm function says $\log x$ is only defined when $x$ is greater than zero. While performing logarithm properties we have to remember certain conditions , our end result must satisfy the domain of that logarithm .
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE