How does the resistance of a conductor depend on:
Length of the conductor?
Area of cross-section of the conductor?
Temperature of the conductor?
Answer
Verified
406.8k+ views
Hint: Resistance is the value of the opposition to the current flow in an electrical circuit. It is measured in Ohms. Thus, it is described well by Ohm’s Law. It is the ratio of voltage and current. Resistance also has a relation with the length, area of a conductor, and also it varies with temperature.
Complete step-by-step solution:
Resistance may be a measure of the opposition to the current flow in a circuit. Resistance is measured in ohms, symbolized by the Greek letter omega (Ω)
a) Length:
Resistance is directly proportional to the length of the conductor. So, as the length increases, the magnitude of resistance increases.
b) Cross-sectional area:
Resistance is inversely proportional to the cross-sectional area of the conductor. Thus, the resistance of the conductor decreased with the decrease in cross-sectional area.
c) Temperature:
Resistance is directly proportional to the temperature of the conductor. If the temperature is increased, the resistance is additionally increased.
Note:It is vital to notice that electrical conductivity and resistivity are inversely proportional, meaning that the more conductive something is that the less resistive it will be. By utilizing the resistance of a conductor, light is often created in an incandescent light bulb. In an incandescent light bulb, there's a wire filament that's a particular length and width, thus providing a particular resistance. If this resistance is simply right, the present flowing through the wire is slowed only enough, no end as a result of an excessive amount of resistance, that the filament heats up to the purpose that it glows.
Complete step-by-step solution:
Resistance may be a measure of the opposition to the current flow in a circuit. Resistance is measured in ohms, symbolized by the Greek letter omega (Ω)
a) Length:
Resistance is directly proportional to the length of the conductor. So, as the length increases, the magnitude of resistance increases.
b) Cross-sectional area:
Resistance is inversely proportional to the cross-sectional area of the conductor. Thus, the resistance of the conductor decreased with the decrease in cross-sectional area.
c) Temperature:
Resistance is directly proportional to the temperature of the conductor. If the temperature is increased, the resistance is additionally increased.
Note:It is vital to notice that electrical conductivity and resistivity are inversely proportional, meaning that the more conductive something is that the less resistive it will be. By utilizing the resistance of a conductor, light is often created in an incandescent light bulb. In an incandescent light bulb, there's a wire filament that's a particular length and width, thus providing a particular resistance. If this resistance is simply right, the present flowing through the wire is slowed only enough, no end as a result of an excessive amount of resistance, that the filament heats up to the purpose that it glows.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 Biology: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Trending doubts
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What are the major means of transport Explain each class 12 social science CBSE
Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE
When was the first election held in India a 194748 class 12 sst CBSE
What is pseudocoelom Where is it located class 12 biology CBSE
State the postulates of special theory of relativi class 12 physics CBSE