Answer
Verified
396.6k+ views
Hint: The Inverse trigonometric functions perform the opposite operation of the trigonometric functions such as sine, cosine, tangent, etc. The inverse trigonometric functions are used to find the angle measure of a right-angled triangle when the measure of two sides of the triangle are known. The conventional symbol used to represent them is ‘arcsin’, ‘arccosine’, ‘arctan’, etc.
Complete step by step answer:
We will now see the domain and range of all the six inverse trigonometric functions in the following order:
(1) ${{\sin }^{-1}}\left( x \right)$
The domain of ${{\sin }^{-1}}\left( x \right)$ is equal to the range of $\sin \left( x \right)$. So, it could be written as:
$\Rightarrow D\left[ {{\sin }^{-1}}(x) \right]=\left[ -1,1 \right]$
And, the range of ${{\sin }^{-1}}\left( x \right)$ is equal to the domain of $\sin \left( x \right)$. So, it could be written as:
$\Rightarrow R\left[ {{\sin }^{-1}}\left( x \right) \right]=\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$
(2) ${{\cos }^{-1}}\left( x \right)$
The domain of ${{\cos }^{-1}}\left( x \right)$ is equal to the range of $\cos \left( x \right)$. So, it could be written as:
$\Rightarrow D\left[ {{\cos }^{-1}}(x) \right]=\left[ -1,1 \right]$
And, the range of ${{\cos }^{-1}}\left( x \right)$ is equal to the domain of $\cos \left( x \right)$. So, it could be written as:
$\Rightarrow R\left[ {{\cos }^{-1}}\left( x \right) \right]=\left[ 0,\pi \right]$
(3) ${{\tan }^{-1}}\left( x \right)$
The domain of ${{\tan }^{-1}}\left( x \right)$ is equal to the range of $\tan \left( x \right)$. So, it could be written as:
$\Rightarrow D\left[ {{\tan }^{-1}}(x) \right]=\left( -\infty ,\infty \right)$
And, the range of ${{\tan }^{-1}}\left( x \right)$ is equal to the domain of $\tan \left( x \right)$. So, it could be written as:
$\Rightarrow R\left[ {{\tan }^{-1}}\left( x \right) \right]=\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$
(4) ${{\cot }^{-1}}\left( x \right)$
The domain of ${{\cot }^{-1}}\left( x \right)$ is equal to the range of $\cot \left( x \right)$. So, it could be written as:
$\Rightarrow D\left[ {{\cot }^{-1}}(x) \right]=\left( -\infty ,\infty \right)$
And, the range of ${{\cot }^{-1}}\left( x \right)$ is equal to the domain of $\cot \left( x \right)$. So, it could be written as:
$\Rightarrow R\left[ {{\cot }^{-1}}\left( x \right) \right]=\left( 0,\pi \right)$
(5) $\cos e{{c}^{-1}}\left( x \right)$
The domain of $\cos e{{c}^{-1}}\left( x \right)$ is equal to the range of $\cos ec\left( x \right)$. So, it could be written as:
$\Rightarrow D\left[ \cos e{{c}^{-1}}(x) \right]=(-\infty ,1]\cup [1,\infty )$
And, the range of $\cos e{{c}^{-1}}\left( x \right)$ is equal to the domain of $\cos ec\left( x \right)$. So, it could be written as:
$\Rightarrow R\left[ \cos e{{c}^{-1}}\left( x \right) \right]=\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]-\left\{ 0 \right\}$
(6) ${{\sec }^{-1}}\left( x \right)$
The domain of ${{\sec }^{-1}}\left( x \right)$ is equal to the range of $\sec \left( x \right)$. So, it could be written as:
$\Rightarrow D\left[ {{\sec }^{-1}}(x) \right]=(-\infty ,1]\cup [1,\infty )$
And, the range of ${{\sec }^{-1}}\left( x \right)$ is equal to the domain of $\sec \left( x \right)$. So, it could be written as:
$\Rightarrow R\left[ {{\sec }^{-1}}\left( x \right) \right]=\left[ 0,\pi \right]-\left\{ \dfrac{\pi }{2} \right\}$
Note: The inverse functions are basically the mirror image of the fundamental functions. That is, they are identical in shape about the line, $y=x$ . This property is used in problems to plot the graph of these inverse trigonometric functions.
Complete step by step answer:
We will now see the domain and range of all the six inverse trigonometric functions in the following order:
(1) ${{\sin }^{-1}}\left( x \right)$
The domain of ${{\sin }^{-1}}\left( x \right)$ is equal to the range of $\sin \left( x \right)$. So, it could be written as:
$\Rightarrow D\left[ {{\sin }^{-1}}(x) \right]=\left[ -1,1 \right]$
And, the range of ${{\sin }^{-1}}\left( x \right)$ is equal to the domain of $\sin \left( x \right)$. So, it could be written as:
$\Rightarrow R\left[ {{\sin }^{-1}}\left( x \right) \right]=\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$
(2) ${{\cos }^{-1}}\left( x \right)$
The domain of ${{\cos }^{-1}}\left( x \right)$ is equal to the range of $\cos \left( x \right)$. So, it could be written as:
$\Rightarrow D\left[ {{\cos }^{-1}}(x) \right]=\left[ -1,1 \right]$
And, the range of ${{\cos }^{-1}}\left( x \right)$ is equal to the domain of $\cos \left( x \right)$. So, it could be written as:
$\Rightarrow R\left[ {{\cos }^{-1}}\left( x \right) \right]=\left[ 0,\pi \right]$
(3) ${{\tan }^{-1}}\left( x \right)$
The domain of ${{\tan }^{-1}}\left( x \right)$ is equal to the range of $\tan \left( x \right)$. So, it could be written as:
$\Rightarrow D\left[ {{\tan }^{-1}}(x) \right]=\left( -\infty ,\infty \right)$
And, the range of ${{\tan }^{-1}}\left( x \right)$ is equal to the domain of $\tan \left( x \right)$. So, it could be written as:
$\Rightarrow R\left[ {{\tan }^{-1}}\left( x \right) \right]=\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$
(4) ${{\cot }^{-1}}\left( x \right)$
The domain of ${{\cot }^{-1}}\left( x \right)$ is equal to the range of $\cot \left( x \right)$. So, it could be written as:
$\Rightarrow D\left[ {{\cot }^{-1}}(x) \right]=\left( -\infty ,\infty \right)$
And, the range of ${{\cot }^{-1}}\left( x \right)$ is equal to the domain of $\cot \left( x \right)$. So, it could be written as:
$\Rightarrow R\left[ {{\cot }^{-1}}\left( x \right) \right]=\left( 0,\pi \right)$
(5) $\cos e{{c}^{-1}}\left( x \right)$
The domain of $\cos e{{c}^{-1}}\left( x \right)$ is equal to the range of $\cos ec\left( x \right)$. So, it could be written as:
$\Rightarrow D\left[ \cos e{{c}^{-1}}(x) \right]=(-\infty ,1]\cup [1,\infty )$
And, the range of $\cos e{{c}^{-1}}\left( x \right)$ is equal to the domain of $\cos ec\left( x \right)$. So, it could be written as:
$\Rightarrow R\left[ \cos e{{c}^{-1}}\left( x \right) \right]=\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]-\left\{ 0 \right\}$
(6) ${{\sec }^{-1}}\left( x \right)$
The domain of ${{\sec }^{-1}}\left( x \right)$ is equal to the range of $\sec \left( x \right)$. So, it could be written as:
$\Rightarrow D\left[ {{\sec }^{-1}}(x) \right]=(-\infty ,1]\cup [1,\infty )$
And, the range of ${{\sec }^{-1}}\left( x \right)$ is equal to the domain of $\sec \left( x \right)$. So, it could be written as:
$\Rightarrow R\left[ {{\sec }^{-1}}\left( x \right) \right]=\left[ 0,\pi \right]-\left\{ \dfrac{\pi }{2} \right\}$
Note: The inverse functions are basically the mirror image of the fundamental functions. That is, they are identical in shape about the line, $y=x$ . This property is used in problems to plot the graph of these inverse trigonometric functions.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE