
What is the domain and range of inverse trigonometric functions?
Answer
424.5k+ views
Hint: The Inverse trigonometric functions perform the opposite operation of the trigonometric functions such as sine, cosine, tangent, etc. The inverse trigonometric functions are used to find the angle measure of a right-angled triangle when the measure of two sides of the triangle are known. The conventional symbol used to represent them is ‘arcsin’, ‘arccosine’, ‘arctan’, etc.
Complete step by step answer:
We will now see the domain and range of all the six inverse trigonometric functions in the following order:
(1) ${{\sin }^{-1}}\left( x \right)$
The domain of ${{\sin }^{-1}}\left( x \right)$ is equal to the range of $\sin \left( x \right)$. So, it could be written as:
$\Rightarrow D\left[ {{\sin }^{-1}}(x) \right]=\left[ -1,1 \right]$
And, the range of ${{\sin }^{-1}}\left( x \right)$ is equal to the domain of $\sin \left( x \right)$. So, it could be written as:
$\Rightarrow R\left[ {{\sin }^{-1}}\left( x \right) \right]=\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$
(2) ${{\cos }^{-1}}\left( x \right)$
The domain of ${{\cos }^{-1}}\left( x \right)$ is equal to the range of $\cos \left( x \right)$. So, it could be written as:
$\Rightarrow D\left[ {{\cos }^{-1}}(x) \right]=\left[ -1,1 \right]$
And, the range of ${{\cos }^{-1}}\left( x \right)$ is equal to the domain of $\cos \left( x \right)$. So, it could be written as:
$\Rightarrow R\left[ {{\cos }^{-1}}\left( x \right) \right]=\left[ 0,\pi \right]$
(3) ${{\tan }^{-1}}\left( x \right)$
The domain of ${{\tan }^{-1}}\left( x \right)$ is equal to the range of $\tan \left( x \right)$. So, it could be written as:
$\Rightarrow D\left[ {{\tan }^{-1}}(x) \right]=\left( -\infty ,\infty \right)$
And, the range of ${{\tan }^{-1}}\left( x \right)$ is equal to the domain of $\tan \left( x \right)$. So, it could be written as:
$\Rightarrow R\left[ {{\tan }^{-1}}\left( x \right) \right]=\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$
(4) ${{\cot }^{-1}}\left( x \right)$
The domain of ${{\cot }^{-1}}\left( x \right)$ is equal to the range of $\cot \left( x \right)$. So, it could be written as:
$\Rightarrow D\left[ {{\cot }^{-1}}(x) \right]=\left( -\infty ,\infty \right)$
And, the range of ${{\cot }^{-1}}\left( x \right)$ is equal to the domain of $\cot \left( x \right)$. So, it could be written as:
$\Rightarrow R\left[ {{\cot }^{-1}}\left( x \right) \right]=\left( 0,\pi \right)$
(5) $\cos e{{c}^{-1}}\left( x \right)$
The domain of $\cos e{{c}^{-1}}\left( x \right)$ is equal to the range of $\cos ec\left( x \right)$. So, it could be written as:
$\Rightarrow D\left[ \cos e{{c}^{-1}}(x) \right]=(-\infty ,1]\cup [1,\infty )$
And, the range of $\cos e{{c}^{-1}}\left( x \right)$ is equal to the domain of $\cos ec\left( x \right)$. So, it could be written as:
$\Rightarrow R\left[ \cos e{{c}^{-1}}\left( x \right) \right]=\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]-\left\{ 0 \right\}$
(6) ${{\sec }^{-1}}\left( x \right)$
The domain of ${{\sec }^{-1}}\left( x \right)$ is equal to the range of $\sec \left( x \right)$. So, it could be written as:
$\Rightarrow D\left[ {{\sec }^{-1}}(x) \right]=(-\infty ,1]\cup [1,\infty )$
And, the range of ${{\sec }^{-1}}\left( x \right)$ is equal to the domain of $\sec \left( x \right)$. So, it could be written as:
$\Rightarrow R\left[ {{\sec }^{-1}}\left( x \right) \right]=\left[ 0,\pi \right]-\left\{ \dfrac{\pi }{2} \right\}$
Note: The inverse functions are basically the mirror image of the fundamental functions. That is, they are identical in shape about the line, $y=x$ . This property is used in problems to plot the graph of these inverse trigonometric functions.
Complete step by step answer:
We will now see the domain and range of all the six inverse trigonometric functions in the following order:
(1) ${{\sin }^{-1}}\left( x \right)$
The domain of ${{\sin }^{-1}}\left( x \right)$ is equal to the range of $\sin \left( x \right)$. So, it could be written as:
$\Rightarrow D\left[ {{\sin }^{-1}}(x) \right]=\left[ -1,1 \right]$
And, the range of ${{\sin }^{-1}}\left( x \right)$ is equal to the domain of $\sin \left( x \right)$. So, it could be written as:
$\Rightarrow R\left[ {{\sin }^{-1}}\left( x \right) \right]=\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$
(2) ${{\cos }^{-1}}\left( x \right)$
The domain of ${{\cos }^{-1}}\left( x \right)$ is equal to the range of $\cos \left( x \right)$. So, it could be written as:
$\Rightarrow D\left[ {{\cos }^{-1}}(x) \right]=\left[ -1,1 \right]$
And, the range of ${{\cos }^{-1}}\left( x \right)$ is equal to the domain of $\cos \left( x \right)$. So, it could be written as:
$\Rightarrow R\left[ {{\cos }^{-1}}\left( x \right) \right]=\left[ 0,\pi \right]$
(3) ${{\tan }^{-1}}\left( x \right)$
The domain of ${{\tan }^{-1}}\left( x \right)$ is equal to the range of $\tan \left( x \right)$. So, it could be written as:
$\Rightarrow D\left[ {{\tan }^{-1}}(x) \right]=\left( -\infty ,\infty \right)$
And, the range of ${{\tan }^{-1}}\left( x \right)$ is equal to the domain of $\tan \left( x \right)$. So, it could be written as:
$\Rightarrow R\left[ {{\tan }^{-1}}\left( x \right) \right]=\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$
(4) ${{\cot }^{-1}}\left( x \right)$
The domain of ${{\cot }^{-1}}\left( x \right)$ is equal to the range of $\cot \left( x \right)$. So, it could be written as:
$\Rightarrow D\left[ {{\cot }^{-1}}(x) \right]=\left( -\infty ,\infty \right)$
And, the range of ${{\cot }^{-1}}\left( x \right)$ is equal to the domain of $\cot \left( x \right)$. So, it could be written as:
$\Rightarrow R\left[ {{\cot }^{-1}}\left( x \right) \right]=\left( 0,\pi \right)$
(5) $\cos e{{c}^{-1}}\left( x \right)$
The domain of $\cos e{{c}^{-1}}\left( x \right)$ is equal to the range of $\cos ec\left( x \right)$. So, it could be written as:
$\Rightarrow D\left[ \cos e{{c}^{-1}}(x) \right]=(-\infty ,1]\cup [1,\infty )$
And, the range of $\cos e{{c}^{-1}}\left( x \right)$ is equal to the domain of $\cos ec\left( x \right)$. So, it could be written as:
$\Rightarrow R\left[ \cos e{{c}^{-1}}\left( x \right) \right]=\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]-\left\{ 0 \right\}$
(6) ${{\sec }^{-1}}\left( x \right)$
The domain of ${{\sec }^{-1}}\left( x \right)$ is equal to the range of $\sec \left( x \right)$. So, it could be written as:
$\Rightarrow D\left[ {{\sec }^{-1}}(x) \right]=(-\infty ,1]\cup [1,\infty )$
And, the range of ${{\sec }^{-1}}\left( x \right)$ is equal to the domain of $\sec \left( x \right)$. So, it could be written as:
$\Rightarrow R\left[ {{\sec }^{-1}}\left( x \right) \right]=\left[ 0,\pi \right]-\left\{ \dfrac{\pi }{2} \right\}$
Note: The inverse functions are basically the mirror image of the fundamental functions. That is, they are identical in shape about the line, $y=x$ . This property is used in problems to plot the graph of these inverse trigonometric functions.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Who is Mukesh What is his dream Why does it look like class 12 english CBSE

Who was RajKumar Shukla Why did he come to Lucknow class 12 english CBSE

The word Maasai is derived from the word Maa Maasai class 12 social science CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

Why is the cell called the structural and functional class 12 biology CBSE

Which country did Danny Casey play for class 12 english CBSE
