Answer
Verified
498k+ views
Hint: Use the necessary tools to attempt construction problems. Follow the construction steps.
Step #1: Draw a circle with centre $O$ having radius \[3cm\].
Step #2: Take three points $A,B$and \[C\] in the circle and join \[A\] to the centre of the circle $O$.
Step #3: If \[\angle BAC\] is to be\[{50^ \circ }\], should be\[{100^ \circ }\].
Step #4: If \[\angle ABC\] is to be\[{60^ \circ }\], should be\[{120^ \circ }\].
Step #5: If \[\angle ACB\] is to be\[{70^ \circ }\], should be\[{140^ \circ }\].
Step #6: Join the points B and C such that \[m\angle AOC = {100^ \circ }\] and\[m\angle BOC = {120^ \circ }\].
Thus, \[\Delta ABC\]is the required triangle.
Step #1: Extend \[OA\] and draw perpendicular to it through\[A\].
Step #2: Extend \[OB\] and draw perpendicular to it through\[B\].
Step #3: In the same way draw a perpendicular from point \[C\] through\[OC\].
Let the points of intersection of these perpendicular be \[P,Q\] and\[R\], so we get the required \[\Delta PQR\].
\[m\angle AOC = {120^ \circ }\]
\[ \Rightarrow m\angle P = {180^ \circ } - {120^ \circ } = {60^ \circ }\] ……(opposite angles of a quadrilateral are supplementary)
In the same way,
\[ \Rightarrow m\angle Q = {180^ \circ } - {140^ \circ } = {40^ \circ }\]
And, \[ \Rightarrow m\angle R = {180^ \circ } - {100^ \circ } = {80^ \circ }\]
Note: Use the necessary tools to attempt construction problems. Mistakes can be made in reading the angles wrongly on the instruments or incorrect dimensioning in the diagram.
Steps of Construction:
Step #1: Draw a circle with centre $O$ having radius \[3cm\].
Step #2: Take three points $A,B$and \[C\] in the circle and join \[A\] to the centre of the circle $O$.
Step #3: If \[\angle BAC\] is to be\[{50^ \circ }\], should be\[{100^ \circ }\].
Step #4: If \[\angle ABC\] is to be\[{60^ \circ }\], should be\[{120^ \circ }\].
Step #5: If \[\angle ACB\] is to be\[{70^ \circ }\], should be\[{140^ \circ }\].
Step #6: Join the points B and C such that \[m\angle AOC = {100^ \circ }\] and\[m\angle BOC = {120^ \circ }\].
Thus, \[\Delta ABC\]is the required triangle.
Steps of Construction:
Step #1: Extend \[OA\] and draw perpendicular to it through\[A\].
Step #2: Extend \[OB\] and draw perpendicular to it through\[B\].
Step #3: In the same way draw a perpendicular from point \[C\] through\[OC\].
Let the points of intersection of these perpendicular be \[P,Q\] and\[R\], so we get the required \[\Delta PQR\].
In the quadrilateral \[PAOC\],
\[m\angle AOC = {120^ \circ }\]
\[ \Rightarrow m\angle P = {180^ \circ } - {120^ \circ } = {60^ \circ }\] ……(opposite angles of a quadrilateral are supplementary)
In the same way,
\[ \Rightarrow m\angle Q = {180^ \circ } - {140^ \circ } = {40^ \circ }\]
And, \[ \Rightarrow m\angle R = {180^ \circ } - {100^ \circ } = {80^ \circ }\]
Note: Use the necessary tools to attempt construction problems. Mistakes can be made in reading the angles wrongly on the instruments or incorrect dimensioning in the diagram.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers