Answer
Verified
417k+ views
Hint :Moving coil galvanometer is known as a device that can be used basically to measure or detect small electric current.. Here, we discuss the principle and construction of the moving coil galvanometer. A radial magnetic field that is produced by cylindrical poles of permanent magnet of galvanometer is always parallel to the plane of the coil.
Complete Step By Step Answer:
Moving coil galvanometer (MCG) is basically a device that is used to measure or detect small electric current flowing in the electric circuit.
CONSTRUCTION:
A moving coil galvanometer is a device that contains a coil wound on a non-metallic frame. The coil is suspended between two poles of a permanent magnet that are cylindrical in shape. The coil of MCG is suspended with a movable tension head H by a strip or wire made of phosphor bronze that acts as a path for the current to the coil also. End of the wire is placed and is connected to the terminal ${T_2} $ of the galvanometer. The other end of the coil is connected to a light spring which is finally connected to the terminal ${T_1} $ . The spring exerts a small restoring torque on the coil. The diagram of moving coil galvanometer is shown below
The whole system of the moving coil galvanometer is enclosed in a non-metallic case (say wooden) case to avoid disturbance due to air.
The torque experienced by the coil, when the current flows through the coil, is given by
$\tau = NIAB\sin \theta $
Here, $ $B $ $ is the intensity of the magnetic field, $I $ is the current flowing through the coil, $A $ is the area of the coil, $N $ is the number of turns in the coil. Also, $\theta $ is the angle made by the normal to the plane of the coil with the direction of the magnetic field.
USE OF A RADIAL MAGNETIC FIELD IN THE MOVING COIL GALVANOMETER:
A radial magnetic field that is produced by the cylindrical poles of the permanent magnet of the galvanometer is always parallel to the plane of the coil. Torque produced in the coil of the galvanometer is given by, $\tau = NIAB\sin \theta $ throughout the rotation of the coil.
For a radial magnetic field, the angle between the normal to the plane of the loop and the magnetic field is $90^\circ $ .
$\therefore \,\,\tau = NIAB $
$ \Rightarrow \,\tau \propto I $
Note :
When we use a radial magnetic field, the deflection of the coil will be proportional to the current flowing through the coil. Therefore, we will get a linear scale that can be used to determine the deflection of the coil. Also, for the equilibrium of the coil, deflection of the coil is equal to the restoring torque.
Complete Step By Step Answer:
Moving coil galvanometer (MCG) is basically a device that is used to measure or detect small electric current flowing in the electric circuit.
CONSTRUCTION:
A moving coil galvanometer is a device that contains a coil wound on a non-metallic frame. The coil is suspended between two poles of a permanent magnet that are cylindrical in shape. The coil of MCG is suspended with a movable tension head H by a strip or wire made of phosphor bronze that acts as a path for the current to the coil also. End of the wire is placed and is connected to the terminal ${T_2} $ of the galvanometer. The other end of the coil is connected to a light spring which is finally connected to the terminal ${T_1} $ . The spring exerts a small restoring torque on the coil. The diagram of moving coil galvanometer is shown below
The whole system of the moving coil galvanometer is enclosed in a non-metallic case (say wooden) case to avoid disturbance due to air.
The torque experienced by the coil, when the current flows through the coil, is given by
$\tau = NIAB\sin \theta $
Here, $ $B $ $ is the intensity of the magnetic field, $I $ is the current flowing through the coil, $A $ is the area of the coil, $N $ is the number of turns in the coil. Also, $\theta $ is the angle made by the normal to the plane of the coil with the direction of the magnetic field.
USE OF A RADIAL MAGNETIC FIELD IN THE MOVING COIL GALVANOMETER:
A radial magnetic field that is produced by the cylindrical poles of the permanent magnet of the galvanometer is always parallel to the plane of the coil. Torque produced in the coil of the galvanometer is given by, $\tau = NIAB\sin \theta $ throughout the rotation of the coil.
For a radial magnetic field, the angle between the normal to the plane of the loop and the magnetic field is $90^\circ $ .
$\therefore \,\,\tau = NIAB $
$ \Rightarrow \,\tau \propto I $
Note :
When we use a radial magnetic field, the deflection of the coil will be proportional to the current flowing through the coil. Therefore, we will get a linear scale that can be used to determine the deflection of the coil. Also, for the equilibrium of the coil, deflection of the coil is equal to the restoring torque.
Recently Updated Pages
Fill in the blanks with a suitable option She showed class 10 english CBSE
TISCO is located on the banks of which river A Tungabhadra class 10 social science CBSE
What is greed for clothes A Simply desire to have them class 10 social science CBSE
What does the 17th Parallel line separate A South and class 10 social science CBSE
The original home of the gypsies was A Egypt B Russia class 10 social science CBSE
The angle between the true north south line and the class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
Which is the longest day and shortest night in the class 11 sst CBSE
What is the definite integral of zero a constant b class 12 maths CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE