Answer
Verified
447.3k+ views
Hint: The electrons are transited from higher energy level to the lower energy levels. This causes the spectral lines of different wavelengths. The single electron orbiting around the nucleus of the hydrogen atom is explained by the Bohr model of the atom.
Complete step by step answer:
The energy level diagram of the hydrogen atom is given below.
When the electron transits from a higher energy level to a lower energy level photon is emitted. The energy of the photon is the difference in the energy of the states. The photon will emit with a frequency corresponding to the energy difference of the final and initial energy states. The energy of each state remains the same. Hence the emitted photon will always have the same frequency always.
The spectral lines are classified into series. The expression connecting the wavelength and the difference between the energy levels is described by the Rydberg formula.
$\dfrac{1}{\lambda } = {Z^2}R\left( {\dfrac{1}{{n_f^2}} - \dfrac{1}{{n_i^2}}} \right)$.
Where $\lambda $ is the wavelength, $Z$ is the atomic number, $R$ is the Rydberg constant, ${n_f}$ is the principal quantum number of the final state, and ${n_i}$ is the principal quantum number of the initial state.
The spectral lines including the transition of the electron to $n = 1$ energy state from the higher energy levels are called Lyman series. That is ${n_f} = 1$ and ${n_i} > 1$.
The spectral lines including the transition of the electron to $n = 2$ energy state from the higher energy levels are called Balmer series. That is ${n_f} = 2$ and ${n_i} > 2$.
The spectral lines including the transition of the electron to $n = 3$ energy state from the higher energy levels are called Paschen series. That is ${n_f} = 3$ and ${n_i} > 3$.
The spectral lines including the transition of the electron to $n = 4$ energy state from the higher energy levels are called Brackett series. That is ${n_f} = 4$ and ${n_i} > 4$.
The spectral lines including the transition of the electron to $n = 5$ energy state from the higher energy levels are called Pfund series. That is ${n_f} = 5$ and ${n_i} > 5$.
Note:
The wavelength will be higher for the transitions between adjacent energy levels. The Balmer series have wavelengths similar to the visible light. Hence they are visible. And the Paschen lies in the infrared region.
Complete step by step answer:
The energy level diagram of the hydrogen atom is given below.
When the electron transits from a higher energy level to a lower energy level photon is emitted. The energy of the photon is the difference in the energy of the states. The photon will emit with a frequency corresponding to the energy difference of the final and initial energy states. The energy of each state remains the same. Hence the emitted photon will always have the same frequency always.
The spectral lines are classified into series. The expression connecting the wavelength and the difference between the energy levels is described by the Rydberg formula.
$\dfrac{1}{\lambda } = {Z^2}R\left( {\dfrac{1}{{n_f^2}} - \dfrac{1}{{n_i^2}}} \right)$.
Where $\lambda $ is the wavelength, $Z$ is the atomic number, $R$ is the Rydberg constant, ${n_f}$ is the principal quantum number of the final state, and ${n_i}$ is the principal quantum number of the initial state.
The spectral lines including the transition of the electron to $n = 1$ energy state from the higher energy levels are called Lyman series. That is ${n_f} = 1$ and ${n_i} > 1$.
The spectral lines including the transition of the electron to $n = 2$ energy state from the higher energy levels are called Balmer series. That is ${n_f} = 2$ and ${n_i} > 2$.
The spectral lines including the transition of the electron to $n = 3$ energy state from the higher energy levels are called Paschen series. That is ${n_f} = 3$ and ${n_i} > 3$.
The spectral lines including the transition of the electron to $n = 4$ energy state from the higher energy levels are called Brackett series. That is ${n_f} = 4$ and ${n_i} > 4$.
The spectral lines including the transition of the electron to $n = 5$ energy state from the higher energy levels are called Pfund series. That is ${n_f} = 5$ and ${n_i} > 5$.
Note:
The wavelength will be higher for the transitions between adjacent energy levels. The Balmer series have wavelengths similar to the visible light. Hence they are visible. And the Paschen lies in the infrared region.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE