Answer
Verified
422.7k+ views
Hint: Recall that NAND gate allows is only 0 when both inputs are equal to 1. A TTL NAND gate logic circuit has at least four bi polar junction transistors in which the input (transistor which receives input) has two emitters. The output is taken between the emitter and collector of two different transistors.
Complete answer:
The above diagram is the circuit diagram of a TTL NAND gate.
From the diagram, we shall explain the working. Now, as seen, the transistor \[{T_1}\] has two emitters to allow two inputs into the transistor. Now, as connected the base voltage will be at 5V. if both inputs are logic 1 (usually means about 5V too), the potential difference across base and emitter would be zero or nearly. Hence, no current will flow and the transistor is turned off. So, the collector voltage would also be equal to about 5V. Hence, this potential can drive current through the emitter of the transistor \[{T_2}\]. This then will allow the collector voltage of the transistor \[{T_2}\] to fall.
Now due to the current flowing through the emitter, there would be a voltage drop across the resistor \[{R_3}\]. The desired voltage drop would be about \[0.7V\]. As seen, this is the input of the transistor \[{T_3}\]. Hence, the transistor is turned on. Due to saturation, the collector voltage will fall to about \[0.2V\] which is a logic 0. A
For the transistor \[{T_4}\], observe that the emitter voltage is made up of the entire voltage of the transistor \[{T_3}\] plus the voltage drop across the diode D about \[0.7V\]. Hence the emitter potential would be \[0.7 + 0.2 = 0.9V\]. Now the base voltage of the transistor \[{T_4}\], would be the voltage across the base-emitter of \[{T_3}\] and the voltage of the entire transistor (i.e.) voltage across emitter-collector. This would also be equal to about \[0.9V\]. Hence the emitter voltage and the collector voltage are equal. So the transistor \[{T_4}\] will be turned off too. So the output is zero when both inputs are 1.
Note:
For clarity, note that logic circuits are made such that the transistors will work in saturation mode. Hence, in the explanation above, note that when we say current is flowing, we imply that saturation current is flowing.
Complete answer:
The above diagram is the circuit diagram of a TTL NAND gate.
From the diagram, we shall explain the working. Now, as seen, the transistor \[{T_1}\] has two emitters to allow two inputs into the transistor. Now, as connected the base voltage will be at 5V. if both inputs are logic 1 (usually means about 5V too), the potential difference across base and emitter would be zero or nearly. Hence, no current will flow and the transistor is turned off. So, the collector voltage would also be equal to about 5V. Hence, this potential can drive current through the emitter of the transistor \[{T_2}\]. This then will allow the collector voltage of the transistor \[{T_2}\] to fall.
Now due to the current flowing through the emitter, there would be a voltage drop across the resistor \[{R_3}\]. The desired voltage drop would be about \[0.7V\]. As seen, this is the input of the transistor \[{T_3}\]. Hence, the transistor is turned on. Due to saturation, the collector voltage will fall to about \[0.2V\] which is a logic 0. A
For the transistor \[{T_4}\], observe that the emitter voltage is made up of the entire voltage of the transistor \[{T_3}\] plus the voltage drop across the diode D about \[0.7V\]. Hence the emitter potential would be \[0.7 + 0.2 = 0.9V\]. Now the base voltage of the transistor \[{T_4}\], would be the voltage across the base-emitter of \[{T_3}\] and the voltage of the entire transistor (i.e.) voltage across emitter-collector. This would also be equal to about \[0.9V\]. Hence the emitter voltage and the collector voltage are equal. So the transistor \[{T_4}\] will be turned off too. So the output is zero when both inputs are 1.
A | B | Y |
0 | 0 | 1 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
Note:
For clarity, note that logic circuits are made such that the transistors will work in saturation mode. Hence, in the explanation above, note that when we say current is flowing, we imply that saturation current is flowing.
Recently Updated Pages
A long cylindrical shell carries positive surface charge class 12 physics JEE_Main
When a glass slab is placed on a cross made on a sheet class 12 physics JEE_Main
In an insulator the forbidden energy gap between the class 12 physics JEE_Main
A spherical surface of radius of curvature R separates class 12 physics JEE_Main
A ray of light passes through an equilateral prism class 12 physics JEE_Main
An aqueous solution containing liquid A M Wt 128 64 class null chemistry null
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE
Distinguish between asexual and sexual reproduction class 12 biology CBSE