Answer
Verified
435k+ views
Hint: A slope field is a visual representation of a differential equation of the form \[\dfrac{dy}{dx}=f(x,y)\].At each sample point \[(x,y)\], there is a small line segment whose slope equals the value of \[f(x,y)\]. Slope fields allow us to analyze differential equations graphically.
Complete step by step answer:
If we have given a differential equation in x and y, we can draw a segment with \[\dfrac{dy}{dx}\] as slope at any point \[(x,y)\]. That's the slope field of the equation.
we have to substitute values of x and y into our differential equation. The result will be the value of \[{y}'\] that is the solution of our differential equation which represents the slope in that point of our function.
Consider a case \[x=2\] and \[y=2\].
Then the differential equation will be \[\Rightarrow {{y}^{'}}=y-x=2-2=0\].
This means \[slope=0\] and you'll draw a horizontal line at \[(2,2)x=y\].
It is shown in the below figure.
We can say that at every point where \[x=y\] has a slope equal to zero. So we draw horizontal lines on the slope field at \[x=y\].
Similarly, by taking other points and plotting their slopes at their respective points gives us the slope field graph.
In this way we can plot the slope field of any differential equation.
Note: In order to solve these types of problems, we must have enough knowledge over slope field equations, differential equations. We may use pencil and paper and draw at each point a little line with inclination representing the value calculated at that point.
Complete step by step answer:
If we have given a differential equation in x and y, we can draw a segment with \[\dfrac{dy}{dx}\] as slope at any point \[(x,y)\]. That's the slope field of the equation.
we have to substitute values of x and y into our differential equation. The result will be the value of \[{y}'\] that is the solution of our differential equation which represents the slope in that point of our function.
Consider a case \[x=2\] and \[y=2\].
Then the differential equation will be \[\Rightarrow {{y}^{'}}=y-x=2-2=0\].
This means \[slope=0\] and you'll draw a horizontal line at \[(2,2)x=y\].
It is shown in the below figure.
We can say that at every point where \[x=y\] has a slope equal to zero. So we draw horizontal lines on the slope field at \[x=y\].
Similarly, by taking other points and plotting their slopes at their respective points gives us the slope field graph.
In this way we can plot the slope field of any differential equation.
Note: In order to solve these types of problems, we must have enough knowledge over slope field equations, differential equations. We may use pencil and paper and draw at each point a little line with inclination representing the value calculated at that point.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE