Answer
Verified
434.7k+ views
Hint: The given question is based on the concept of the electromagnetic waves. Using the properties of the components of the electromagnetic waves, that is, the electric field and the magnetic field and the mathematical relation of the same, we will find the answer to this question.
Formulae used:
\[{{E}_{0}}=c{{B}_{0}}\]
\[c=\dfrac{1}{\sqrt{{{\mu }_{0}}{{\varepsilon }_{0}}}}\]
\[{{\mu }_{E}}=\dfrac{1}{2}{{\varepsilon }_{0}}E_{0}^{2}\]
\[{{\mu }_{B}}=\dfrac{1}{2}{{\dfrac{{{B}_{0}}}{{{\mu }_{0}}}}^{2}}\]
Complete answer:
The electromagnetic waves are the composition of the electric and the magnetic fields. The oscillating electric and magnetic fields produce the electromagnetic waves. The direction of the propagation of these waves is perpendicular to the direction of the electric and magnetic fields.
The relation between the electric field and the magnetic field is given as follows:
\[{{E}_{0}}=c{{B}_{0}}\]
Where \[{{E}_{0}}\] is the electric field, $c$ is the speed of light in vacuum and \[{{B}_{0}}\] is the magnetic field.
This speed of light is given as follows:
\[c=\dfrac{1}{\sqrt{{{\mu }_{0}}{{\varepsilon }_{0}}}}\]
Where \[{{\mu }_{0}}\] is the permeability of free space and \[{{\varepsilon }_{0}}\] is the permittivity of the free space.
The electric energy density is represented by the mathematical expression as given follows:
\[{{\mu }_{E}}=\dfrac{1}{2}{{\varepsilon }_{0}}E_{0}^{2}\]
Where \[{{\varepsilon }_{0}}\] is the permittivity of the free space and \[{{E}_{0}}\] is the electric field.
The magnetic energy density is represented by the mathematical expression as given follows.
\[{{\mu }_{B}}=\dfrac{1}{2}{{\dfrac{{{B}_{0}}}{{{\mu }_{0}}}}^{2}}\]
Where \[{{\mu }_{0}}\] is the permeability of free space and \[{{B}_{0}}\] is the magnetic field.
Now, we will derive the relation between the electric and the magnetic energy densities.
\[\begin{align}
& {{\mu }_{E}}=\dfrac{1}{2}{{\varepsilon }_{0}}E_{0}^{2} \\
& \Rightarrow {{\mu }_{E}}=\dfrac{1}{2}{{\varepsilon }_{0}}{{c}^{2}}B_{0}^{2} \\
\end{align}\]
Now substitute the expression of the velocity of light.
\[\begin{align}
& {{\mu }_{E}}=\dfrac{1}{2}{{\varepsilon }_{0}}\left( \dfrac{1}{{{\mu }_{0}}{{\varepsilon }_{0}}} \right)B_{0}^{2} \\
& \Rightarrow {{\mu }_{E}}=\dfrac{1}{2}\dfrac{B_{0}^{2}}{{{\mu }_{0}}} \\
\end{align}\]
The RHS part of the above expression represents the magnetic energy density.
\[{{\mu }_{E}}={{\mu }_{B}}\]
\[\therefore \] The electric energy density is equal to the magnetic energy density
As the value of the electric energy density is equal to the magnetic energy density, thus, the option (A) is correct.
Note:
As the electromagnetic waves are the composition of both the fields, that is, the electric field and the magnetic field, the properties of these fields affect the waves. Thus, the mathematical representation that relates the parameters such as, electric field, magnetic field, the electric field density, the magnetic field, the speed of light should be known to solve this type of problems.
Formulae used:
\[{{E}_{0}}=c{{B}_{0}}\]
\[c=\dfrac{1}{\sqrt{{{\mu }_{0}}{{\varepsilon }_{0}}}}\]
\[{{\mu }_{E}}=\dfrac{1}{2}{{\varepsilon }_{0}}E_{0}^{2}\]
\[{{\mu }_{B}}=\dfrac{1}{2}{{\dfrac{{{B}_{0}}}{{{\mu }_{0}}}}^{2}}\]
Complete answer:
The electromagnetic waves are the composition of the electric and the magnetic fields. The oscillating electric and magnetic fields produce the electromagnetic waves. The direction of the propagation of these waves is perpendicular to the direction of the electric and magnetic fields.
The relation between the electric field and the magnetic field is given as follows:
\[{{E}_{0}}=c{{B}_{0}}\]
Where \[{{E}_{0}}\] is the electric field, $c$ is the speed of light in vacuum and \[{{B}_{0}}\] is the magnetic field.
This speed of light is given as follows:
\[c=\dfrac{1}{\sqrt{{{\mu }_{0}}{{\varepsilon }_{0}}}}\]
Where \[{{\mu }_{0}}\] is the permeability of free space and \[{{\varepsilon }_{0}}\] is the permittivity of the free space.
The electric energy density is represented by the mathematical expression as given follows:
\[{{\mu }_{E}}=\dfrac{1}{2}{{\varepsilon }_{0}}E_{0}^{2}\]
Where \[{{\varepsilon }_{0}}\] is the permittivity of the free space and \[{{E}_{0}}\] is the electric field.
The magnetic energy density is represented by the mathematical expression as given follows.
\[{{\mu }_{B}}=\dfrac{1}{2}{{\dfrac{{{B}_{0}}}{{{\mu }_{0}}}}^{2}}\]
Where \[{{\mu }_{0}}\] is the permeability of free space and \[{{B}_{0}}\] is the magnetic field.
Now, we will derive the relation between the electric and the magnetic energy densities.
\[\begin{align}
& {{\mu }_{E}}=\dfrac{1}{2}{{\varepsilon }_{0}}E_{0}^{2} \\
& \Rightarrow {{\mu }_{E}}=\dfrac{1}{2}{{\varepsilon }_{0}}{{c}^{2}}B_{0}^{2} \\
\end{align}\]
Now substitute the expression of the velocity of light.
\[\begin{align}
& {{\mu }_{E}}=\dfrac{1}{2}{{\varepsilon }_{0}}\left( \dfrac{1}{{{\mu }_{0}}{{\varepsilon }_{0}}} \right)B_{0}^{2} \\
& \Rightarrow {{\mu }_{E}}=\dfrac{1}{2}\dfrac{B_{0}^{2}}{{{\mu }_{0}}} \\
\end{align}\]
The RHS part of the above expression represents the magnetic energy density.
\[{{\mu }_{E}}={{\mu }_{B}}\]
\[\therefore \] The electric energy density is equal to the magnetic energy density
As the value of the electric energy density is equal to the magnetic energy density, thus, the option (A) is correct.
Note:
As the electromagnetic waves are the composition of both the fields, that is, the electric field and the magnetic field, the properties of these fields affect the waves. Thus, the mathematical representation that relates the parameters such as, electric field, magnetic field, the electric field density, the magnetic field, the speed of light should be known to solve this type of problems.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE