Electric displacement is given by $D = \varepsilon E$
Here, $\varepsilon = $ electric permittivity
$E = $ electric field strength
The dimensions of electric displacement is:
(A) $\left[ {M{L^{ - 2}}TA} \right]$
(B) $\left[ {{L^{ - 2}}{T^{ - 1}}A} \right]$
(C) $\left[ {{L^{ - 2}}TA} \right]$
(D) None of these
Answer
Verified
116.4k+ views
Hint: To solve this question, we have to use the Coulomb’s formula of the electrostatic force between two charged particles. From there we can get the expression of the electric displacement in terms of the charge and the distance, from which its dimensions can be deduced.
Complete step-by-step answer:
We know from the Coulomb’s law that the electrostatic force between two charges is given by
$F = \dfrac{{Qq}}{{4\pi {\varepsilon _0}{r^2}}}$
Also, we know that the electric field strength is equal to the electrostatic force per unit charge. So dividing both sides of the above equation with the charge $Q$ we get the electric field as
$E = \dfrac{q}{{4\pi {\varepsilon _0}{r^2}}}$
Multiplying by the electrical permittivity ${\varepsilon _0}$ both the sides, we get
${\varepsilon _0}E = \dfrac{q}{{4\pi {r^2}}}$ ……………..(1)
According to the question, the electric displacement is given by
$D = \varepsilon E$ …………………….(2)
Substituting (1) in (2) we get the electric displacement as
$D = \dfrac{q}{{4\pi {r^2}}}$
Now, taking the dimensions of both the sides, we get
$\left[ D \right] = \left[ {\dfrac{q}{{4\pi {r^2}}}} \right]$
Since \[4\pi \] is a constant, it is dimensionless. Therefore we get
\[\left[ D \right] = \dfrac{{\left[ q \right]}}{{{{\left[ r \right]}^2}}}\] ………………….(3)
Now, we know that the dimensions of the charge are given by
$\left[ q \right] = \left[ {AT} \right]$ ………………..(4)
Also, the dimensions of the distance are given by
$\left[ r \right] = \left[ L \right]$ ……………………..(5)
Substituting (4) and (5) in (3) we get
\[\left[ D \right] = \dfrac{{\left[ {AT} \right]}}{{{{\left[ L \right]}^2}}}\]
On simplifying, we finally get
$\left[ D \right] = \left[ {{L^{ - 2}}TA} \right]$
The dimensions of the electric displacement are $\left[ {{L^{ - 2}}TA} \right]$.
Hence, the correct answer is option C.
Note: We could also separately find out the dimensions of the electrical permittivity and the electric field to get the dimensions of the electric displacement. But that would involve time taking calculations, so we directly found out the expression for the electric displacement in terms of the simple parameters.
Complete step-by-step answer:
We know from the Coulomb’s law that the electrostatic force between two charges is given by
$F = \dfrac{{Qq}}{{4\pi {\varepsilon _0}{r^2}}}$
Also, we know that the electric field strength is equal to the electrostatic force per unit charge. So dividing both sides of the above equation with the charge $Q$ we get the electric field as
$E = \dfrac{q}{{4\pi {\varepsilon _0}{r^2}}}$
Multiplying by the electrical permittivity ${\varepsilon _0}$ both the sides, we get
${\varepsilon _0}E = \dfrac{q}{{4\pi {r^2}}}$ ……………..(1)
According to the question, the electric displacement is given by
$D = \varepsilon E$ …………………….(2)
Substituting (1) in (2) we get the electric displacement as
$D = \dfrac{q}{{4\pi {r^2}}}$
Now, taking the dimensions of both the sides, we get
$\left[ D \right] = \left[ {\dfrac{q}{{4\pi {r^2}}}} \right]$
Since \[4\pi \] is a constant, it is dimensionless. Therefore we get
\[\left[ D \right] = \dfrac{{\left[ q \right]}}{{{{\left[ r \right]}^2}}}\] ………………….(3)
Now, we know that the dimensions of the charge are given by
$\left[ q \right] = \left[ {AT} \right]$ ………………..(4)
Also, the dimensions of the distance are given by
$\left[ r \right] = \left[ L \right]$ ……………………..(5)
Substituting (4) and (5) in (3) we get
\[\left[ D \right] = \dfrac{{\left[ {AT} \right]}}{{{{\left[ L \right]}^2}}}\]
On simplifying, we finally get
$\left[ D \right] = \left[ {{L^{ - 2}}TA} \right]$
The dimensions of the electric displacement are $\left[ {{L^{ - 2}}TA} \right]$.
Hence, the correct answer is option C.
Note: We could also separately find out the dimensions of the electrical permittivity and the electric field to get the dimensions of the electric displacement. But that would involve time taking calculations, so we directly found out the expression for the electric displacement in terms of the simple parameters.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
Young's Double Slit Experiment Step by Step Derivation
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Charging and Discharging of Capacitor
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Physics Average Value and RMS Value JEE Main 2025