Answer
Verified
455.1k+ views
Hint: Here, it is important to note that the charge is distributed over an object. Hence we can’t directly apply Coulomb's law which is valid for point charge. Hence we need to get the electric field due to any general element and then integrate over the ring to get a net electric field at the centre.
Formula used:
$dE = \dfrac{Kdq}{r^2}$
Complete answer:
First of all, we have to consider an elementary part of the ring at an angle $\theta$ having angular length of $d\theta$. The small charge inside the elementary part will be calculated as follows:
Charge density $\lambda$ is defined as charge per unit length. Thus, the charge in the elementary part ‘$Rd\theta$’ will be $\lambda Rd\theta$.
Thus $dq = \lambda Rd\theta$
Now, using $dE = \dfrac{Kdq}{r^2}$, we have
$dE = \dfrac{K\lambda R d\theta}{R^2} = \dfrac{K\lambda d\theta}{R}$
Now, as the ring is unsymmetric, we have to find the field in both directions i.e. in x direction and in y direction separately.
So, field in x-direction: $dE_x = dE cos \theta$
$dE_x = \dfrac{K\lambda cos\theta d\theta}{R}$
Integrating, we get:
$\int dE_x = \int \limits_{0}^{\pi /2} \dfrac{K\lambda}{R}cos\theta d\theta$
$E_x = \dfrac{K\lambda}{R}\int \limits_{0}^{\pi /2} cos\theta d\theta = \dfrac{K\lambda}{R}\left( sin(\dfrac{\pi}{2}) - sin 0 \right) = \dfrac{K\lambda}{R}$
Also, field in y-direction:
$dE_{y} = dE sin\theta = \dfrac{K\lambda}{R}\times sin\theta d\theta$
Then, $E_{y} = \int dE sin\theta= \int \dfrac{K\lambda}{ R} \times sin\theta d\theta$
Or, ${{E}_{y}}=\frac{K\lambda}{ {{R}{}}}\times \int\limits_{0}^{\pi/2 }{sin\theta {d}}\theta$ [ as K. q and r are constants ]
${{E}_{y}}=\frac{K\lambda}{ {{R}{}}}\times -\left(cos(\pi/2) - cos 0\right) = \dfrac{K\lambda}{R}$
Now, the net field will be the vector sum of both x and y component:
Thus, $E_{net} = \sqrt{E_x^2+E_y^2}$
Or $E_{net} = \sqrt{\left(\dfrac{K\lambda}R\right)^2+\left(\dfrac{K\lambda}R\right)^2}$
$\implies E_{net} = \sqrt2 \dfrac{K\lambda}{R}$
Note:
This type of question must be tackled only by taking a small element and writing electric fields for smaller elements. In some questions, the figure might be symmetric. In that case, we can directly write the component of the electric field which is symmetric as zero. Also students should understand how to take the limits. If the material were present in the first as well as second quadrant, we might have taken the limits from 0 to $\pi$ instead of 0 to$\dfrac{\pi}{2}$.
Formula used:
$dE = \dfrac{Kdq}{r^2}$
Complete answer:
First of all, we have to consider an elementary part of the ring at an angle $\theta$ having angular length of $d\theta$. The small charge inside the elementary part will be calculated as follows:
Charge density $\lambda$ is defined as charge per unit length. Thus, the charge in the elementary part ‘$Rd\theta$’ will be $\lambda Rd\theta$.
Thus $dq = \lambda Rd\theta$
Now, using $dE = \dfrac{Kdq}{r^2}$, we have
$dE = \dfrac{K\lambda R d\theta}{R^2} = \dfrac{K\lambda d\theta}{R}$
Now, as the ring is unsymmetric, we have to find the field in both directions i.e. in x direction and in y direction separately.
So, field in x-direction: $dE_x = dE cos \theta$
$dE_x = \dfrac{K\lambda cos\theta d\theta}{R}$
Integrating, we get:
$\int dE_x = \int \limits_{0}^{\pi /2} \dfrac{K\lambda}{R}cos\theta d\theta$
$E_x = \dfrac{K\lambda}{R}\int \limits_{0}^{\pi /2} cos\theta d\theta = \dfrac{K\lambda}{R}\left( sin(\dfrac{\pi}{2}) - sin 0 \right) = \dfrac{K\lambda}{R}$
Also, field in y-direction:
$dE_{y} = dE sin\theta = \dfrac{K\lambda}{R}\times sin\theta d\theta$
Then, $E_{y} = \int dE sin\theta= \int \dfrac{K\lambda}{ R} \times sin\theta d\theta$
Or, ${{E}_{y}}=\frac{K\lambda}{ {{R}{}}}\times \int\limits_{0}^{\pi/2 }{sin\theta {d}}\theta$ [ as K. q and r are constants ]
${{E}_{y}}=\frac{K\lambda}{ {{R}{}}}\times -\left(cos(\pi/2) - cos 0\right) = \dfrac{K\lambda}{R}$
Now, the net field will be the vector sum of both x and y component:
Thus, $E_{net} = \sqrt{E_x^2+E_y^2}$
Or $E_{net} = \sqrt{\left(\dfrac{K\lambda}R\right)^2+\left(\dfrac{K\lambda}R\right)^2}$
$\implies E_{net} = \sqrt2 \dfrac{K\lambda}{R}$
Note:
This type of question must be tackled only by taking a small element and writing electric fields for smaller elements. In some questions, the figure might be symmetric. In that case, we can directly write the component of the electric field which is symmetric as zero. Also students should understand how to take the limits. If the material were present in the first as well as second quadrant, we might have taken the limits from 0 to $\pi$ instead of 0 to$\dfrac{\pi}{2}$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE