Answer
Verified
381.9k+ views
Hint: We know that the potential difference between two points in any electrical circuit is defined as the energy required to move a unit positive charge between the two points and potential energy is the energy stored by the system to do the same. Here, using the formula for the potential energy , we can find the net potential energy at the centre of the square as discussed below.
Formula used:
$P.E=\dfrac{kq_1q_2}{r}$
Complete step by step solution:
Given that, $q_1=+1.0\times 10^{-8}C$, $q_2=-2.0\times 10^{-8}C$, $q_3=+3.0\times 10^{-8}C$, $q_4=+2.0\times 10^{-8}C$and $a=1.0m$, then the centre of the square will be $O$ and the distance of the diagonals will be $\sqrt 2$, as shown in the figure below
Then the potential difference at the O due to the charges will be the sum of potential energies at the centre which is given as
$T.P.E=P.E_{AB}+P.E_{BC}+P.E_{CD}+P.E_{DA}+P.E_{AC}+P.E_{DB}$
Substituting, for $P.E=\dfrac{kq_1q_2}{r}$ using the given we have
$\implies T.P.E=\dfrac{k\times 2\times 10^{-8}\times 3\times 10^{-8}}{1}+\dfrac{k\times -2\times 10^{-8}\times 3\times 10^{-8}}{1}+\dfrac{k\times -2\times 10^{-8}\times 1\times 10^{-8}}{1}+\dfrac{k\times 1\times 10^{-8}\times 2\times 10^{-8}}{1}+\dfrac{k\times 2\times 10^{-8}\times -2\times 10^{-8}}{\sqrt 2}+\dfrac{k\times 1\times 10^{-8}\times 3\times 10^{-8}}{\sqrt 2}$
$\implies T.P.E=\dfrac{k\times 6\times 10^{-16}}{1}+\dfrac{k\times -6\times 10^{-16}}{1}+\dfrac{k\times -2\times 10^{-16}}{1}+\dfrac{k\times 2\times 10^{-16}}{1}+\dfrac{k\times -4\times 10^{-16}}{\sqrt 2}+\dfrac{k\times 3\times 10^{-16}}{\sqrt 2}$on simplification, we get
$\implies T.P.E=\dfrac{k\times -4\times 10^{-16}}{\sqrt 2}+\dfrac{k\times 3\times 10^{-16}}{\sqrt 2}$
$\implies T.P.E=\dfrac{k\times 10^{-16}}{\sqrt 2}\times (3-4)$
On further simplification, we have
$\implies T.P.E=\dfrac{k\times -1\times 10^{-16}}{\sqrt 2}$
Since $k=9\times 10^9$, substituting, we have
$\implies T.P.E=\dfrac{9\times 10^{9}\times -1\times 10^{-16}}{\sqrt 2} =\dfrac{9\times 10^{-7}}{\sqrt 2}$
$\therefore T.P.E =\dfrac{9\times 10^{-7}}{\sqrt 2}J$
Thus the required total potential energy at the centre of the given square with side $a=1.0m$$\dfrac{9\times 10^{-7}}{\sqrt 2}J$
Additional Information:
We also know that electric current is produced due to motion of charges. The two are related by Ohm's law.
Note: If the unit positive charge is moved from a region of high potential to a region of low potential, then the energy is emitted during the process, or work is done by the system. Similarly, if the unit positive charge is moved from a region of low potential to high potential, then energy is absorbed, or work is done on the system.
Formula used:
$P.E=\dfrac{kq_1q_2}{r}$
Complete step by step solution:
Given that, $q_1=+1.0\times 10^{-8}C$, $q_2=-2.0\times 10^{-8}C$, $q_3=+3.0\times 10^{-8}C$, $q_4=+2.0\times 10^{-8}C$and $a=1.0m$, then the centre of the square will be $O$ and the distance of the diagonals will be $\sqrt 2$, as shown in the figure below
Then the potential difference at the O due to the charges will be the sum of potential energies at the centre which is given as
$T.P.E=P.E_{AB}+P.E_{BC}+P.E_{CD}+P.E_{DA}+P.E_{AC}+P.E_{DB}$
Substituting, for $P.E=\dfrac{kq_1q_2}{r}$ using the given we have
$\implies T.P.E=\dfrac{k\times 2\times 10^{-8}\times 3\times 10^{-8}}{1}+\dfrac{k\times -2\times 10^{-8}\times 3\times 10^{-8}}{1}+\dfrac{k\times -2\times 10^{-8}\times 1\times 10^{-8}}{1}+\dfrac{k\times 1\times 10^{-8}\times 2\times 10^{-8}}{1}+\dfrac{k\times 2\times 10^{-8}\times -2\times 10^{-8}}{\sqrt 2}+\dfrac{k\times 1\times 10^{-8}\times 3\times 10^{-8}}{\sqrt 2}$
$\implies T.P.E=\dfrac{k\times 6\times 10^{-16}}{1}+\dfrac{k\times -6\times 10^{-16}}{1}+\dfrac{k\times -2\times 10^{-16}}{1}+\dfrac{k\times 2\times 10^{-16}}{1}+\dfrac{k\times -4\times 10^{-16}}{\sqrt 2}+\dfrac{k\times 3\times 10^{-16}}{\sqrt 2}$on simplification, we get
$\implies T.P.E=\dfrac{k\times -4\times 10^{-16}}{\sqrt 2}+\dfrac{k\times 3\times 10^{-16}}{\sqrt 2}$
$\implies T.P.E=\dfrac{k\times 10^{-16}}{\sqrt 2}\times (3-4)$
On further simplification, we have
$\implies T.P.E=\dfrac{k\times -1\times 10^{-16}}{\sqrt 2}$
Since $k=9\times 10^9$, substituting, we have
$\implies T.P.E=\dfrac{9\times 10^{9}\times -1\times 10^{-16}}{\sqrt 2} =\dfrac{9\times 10^{-7}}{\sqrt 2}$
$\therefore T.P.E =\dfrac{9\times 10^{-7}}{\sqrt 2}J$
Thus the required total potential energy at the centre of the given square with side $a=1.0m$$\dfrac{9\times 10^{-7}}{\sqrt 2}J$
Additional Information:
We also know that electric current is produced due to motion of charges. The two are related by Ohm's law.
Note: If the unit positive charge is moved from a region of high potential to a region of low potential, then the energy is emitted during the process, or work is done by the system. Similarly, if the unit positive charge is moved from a region of low potential to high potential, then energy is absorbed, or work is done on the system.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE