Answer
Verified
396.9k+ views
Hint: In order to take out the value of $ \theta $ , firstly multiply cosine inverse both the sides on the first equation, which would lead to opening of the parenthesis and we would get one new equation. Similarly multiplying sine inverse on both the sides of the second equation to open the parenthesis. Then subtract one equation from the other which would lead to cancellation of $ \theta $ , and our value will be obtained.
Complete step-by-step answer:
We are given with two equations, marking them as (1) and (2):
$ a = \cos \left( {\theta - \alpha } \right) $ ……….(1)
$ b = \sin \left( {\theta - \beta } \right) $ ……….(2)
Now, in (1) multiplying both the sides with cosine inverse $ \left( {{{\cos }^{ - 1}}} \right) $ , as there is cosine value given:
$
a = \cos \left( {\theta - \alpha } \right) \\
= > {\cos ^{ - 1}}\left( a \right) = {\cos ^{ - 1}}\left( {\cos \left( {\theta - \alpha } \right)} \right) \;
$
Since, we know that $ {\cos ^{ - 1}}\left( {\cos \theta } \right) = \theta $ , applying this in above equation in order to cancel out the cosine terms and we get:
$
{\cos ^{ - 1}}\left( a \right) = {\cos ^{ - 1}}\left( {\cos \left( {\theta - \alpha } \right)} \right) \\
= > {\cos ^{ - 1}}\left( a \right) = \theta - \alpha \;
$
Marking the equation $ {\cos ^{ - 1}}\left( a \right) = \theta - \alpha $ as (3).
Similarly, multiplying both sides with sine inverse $ \left( {{{\sin }^{ - 1}}} \right) $ in (2) as sine value is given in the equation, and using the same concept of $ {\cos ^{ - 1}}\left( {\cos \theta } \right) = \theta $ for sine, in order to cancel out sine terms, we get:
$
b = \sin \left( {\theta - \beta } \right) \\
= > {\sin ^{ - 1}}\left( b \right) = {\sin ^{ - 1}}\left( {\sin \left( {\theta - \beta } \right)} \right) \\
= > {\sin ^{ - 1}}\left( b \right) = \theta - \beta \;
$
Marking the equation $ {\sin ^{ - 1}}\left( b \right) = \theta - \beta $ as (4):
Now, subtracting (4) from (3) and we get:
$
\left( 4 \right) - \left( 3 \right) \\
{\cos ^{ - 1}}\left( a \right) - {\sin ^{ - 1}}\left( b \right) = \left( {\theta - \alpha } \right) - \left( {\theta - \beta } \right) \;
$
Opening up the parenthesis for the above equation:
$
{\cos ^{ - 1}}\left( a \right) - {\sin ^{ - 1}}\left( b \right) = \left( {\theta - \alpha } \right) - \left( {\theta - \beta } \right) \\
= > {\cos ^{ - 1}}\left( a \right) - {\sin ^{ - 1}}\left( b \right) = \theta - \alpha - \theta + \beta \;
$
We can see that $ \theta $ can be cancelled out, so on further solving, we get that:
$ {\cos ^{ - 1}}\left( a \right) - {\sin ^{ - 1}}\left( b \right) = - \alpha + \beta $
Arranging the above equation:
$ {\cos ^{ - 1}}\left( a \right) - {\sin ^{ - 1}}\left( b \right) = \beta - \alpha $
And, $ \theta $ is cancelled out between the two equations $ a = \cos \left( {\theta - \alpha } \right) $ and $ b = \sin \left( {\theta - \beta } \right) $ .
Note: Do not apply any formula, which is not known to open the brackets otherwise would lead to confusion in solving the above equations.
Do not make mistakes by directly subtracting the terms in order to cancel out inner terms. It’s an inappropriate step.
Complete step-by-step answer:
We are given with two equations, marking them as (1) and (2):
$ a = \cos \left( {\theta - \alpha } \right) $ ……….(1)
$ b = \sin \left( {\theta - \beta } \right) $ ……….(2)
Now, in (1) multiplying both the sides with cosine inverse $ \left( {{{\cos }^{ - 1}}} \right) $ , as there is cosine value given:
$
a = \cos \left( {\theta - \alpha } \right) \\
= > {\cos ^{ - 1}}\left( a \right) = {\cos ^{ - 1}}\left( {\cos \left( {\theta - \alpha } \right)} \right) \;
$
Since, we know that $ {\cos ^{ - 1}}\left( {\cos \theta } \right) = \theta $ , applying this in above equation in order to cancel out the cosine terms and we get:
$
{\cos ^{ - 1}}\left( a \right) = {\cos ^{ - 1}}\left( {\cos \left( {\theta - \alpha } \right)} \right) \\
= > {\cos ^{ - 1}}\left( a \right) = \theta - \alpha \;
$
Marking the equation $ {\cos ^{ - 1}}\left( a \right) = \theta - \alpha $ as (3).
Similarly, multiplying both sides with sine inverse $ \left( {{{\sin }^{ - 1}}} \right) $ in (2) as sine value is given in the equation, and using the same concept of $ {\cos ^{ - 1}}\left( {\cos \theta } \right) = \theta $ for sine, in order to cancel out sine terms, we get:
$
b = \sin \left( {\theta - \beta } \right) \\
= > {\sin ^{ - 1}}\left( b \right) = {\sin ^{ - 1}}\left( {\sin \left( {\theta - \beta } \right)} \right) \\
= > {\sin ^{ - 1}}\left( b \right) = \theta - \beta \;
$
Marking the equation $ {\sin ^{ - 1}}\left( b \right) = \theta - \beta $ as (4):
Now, subtracting (4) from (3) and we get:
$
\left( 4 \right) - \left( 3 \right) \\
{\cos ^{ - 1}}\left( a \right) - {\sin ^{ - 1}}\left( b \right) = \left( {\theta - \alpha } \right) - \left( {\theta - \beta } \right) \;
$
Opening up the parenthesis for the above equation:
$
{\cos ^{ - 1}}\left( a \right) - {\sin ^{ - 1}}\left( b \right) = \left( {\theta - \alpha } \right) - \left( {\theta - \beta } \right) \\
= > {\cos ^{ - 1}}\left( a \right) - {\sin ^{ - 1}}\left( b \right) = \theta - \alpha - \theta + \beta \;
$
We can see that $ \theta $ can be cancelled out, so on further solving, we get that:
$ {\cos ^{ - 1}}\left( a \right) - {\sin ^{ - 1}}\left( b \right) = - \alpha + \beta $
Arranging the above equation:
$ {\cos ^{ - 1}}\left( a \right) - {\sin ^{ - 1}}\left( b \right) = \beta - \alpha $
And, $ \theta $ is cancelled out between the two equations $ a = \cos \left( {\theta - \alpha } \right) $ and $ b = \sin \left( {\theta - \beta } \right) $ .
Note: Do not apply any formula, which is not known to open the brackets otherwise would lead to confusion in solving the above equations.
Do not make mistakes by directly subtracting the terms in order to cancel out inner terms. It’s an inappropriate step.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers