
Energy required for the electron excitation in $L{i^{ + + }}$ from the first to the third Bohr orbit is?
A. 12.1 eV
B. 36.3 eV
C. 108.8 eV
D. 122.4 eV
Answer
472.2k+ views
Hint: In order to give solution of the above question, we need to use the energy of ${n^{th}}$orbit of hydrogen atom so that we have to solve for the first orbit and the third orbit then we need to find the difference of two.
Complete step by step answer:
The energy of the electron in the ${n^{th}}$ orbit of a hydrogen atom is given by
${E_n} = \dfrac{{ - 13.6{Z^2}}}{{{n^2}}}eV$
For $L{i^{ + + }}$, Z=3
In the case of an first orbit, n = 1, where n be the number of orbital level
$
{E_1} = \dfrac{{ - 13.6 \times {3^2}}}{1} \\
\Rightarrow {E_1} = - 122.4eV \\
$
In the case of an third orbit, n=3
$
{E_3} = \dfrac{{ - 13.6 \times {3^2}}}{{{3^2}}} \\
\Rightarrow {E_3} = - 13.6eV \\
$
Hence, the energy difference which is given by
$
\Delta E = {E_2} - {E_1} \\
\Rightarrow \Delta E = - 13.6 - ( - 122.4) \\
\Rightarrow \Delta E = 108.8eV \\
$
Hence the correct option is C.
Note: Practically the electron which is present in a hydrogen atom carries certain energies. Such energies are usually called the energy levels of hydrogen. The quantum number n is denoted as the different energy levels of the hydrogen atom, where n varies from one to infinity. The first energy level is taken as the lowest energy level or ground state and the infinity is taken as the highest one.
Complete step by step answer:
The energy of the electron in the ${n^{th}}$ orbit of a hydrogen atom is given by
${E_n} = \dfrac{{ - 13.6{Z^2}}}{{{n^2}}}eV$
For $L{i^{ + + }}$, Z=3
In the case of an first orbit, n = 1, where n be the number of orbital level
$
{E_1} = \dfrac{{ - 13.6 \times {3^2}}}{1} \\
\Rightarrow {E_1} = - 122.4eV \\
$
In the case of an third orbit, n=3
$
{E_3} = \dfrac{{ - 13.6 \times {3^2}}}{{{3^2}}} \\
\Rightarrow {E_3} = - 13.6eV \\
$
Hence, the energy difference which is given by
$
\Delta E = {E_2} - {E_1} \\
\Rightarrow \Delta E = - 13.6 - ( - 122.4) \\
\Rightarrow \Delta E = 108.8eV \\
$
Hence the correct option is C.
Note: Practically the electron which is present in a hydrogen atom carries certain energies. Such energies are usually called the energy levels of hydrogen. The quantum number n is denoted as the different energy levels of the hydrogen atom, where n varies from one to infinity. The first energy level is taken as the lowest energy level or ground state and the infinity is taken as the highest one.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE

Describe the effects of the Second World War class 11 social science CBSE
