Answer
Verified
499.5k+ views
Hint: To solve the question, we have to apply trigonometric identities and the values of trigonometric functions to arrive at the value of \[\tan \left( \dfrac{\pi }{12} \right)\].
Complete step-by-step answer:
We know that the formula for \[\tan 2\alpha \] is given by \[\dfrac{2\tan \alpha }{1-{{\tan }^{2}}\alpha }\]
By substituting \[\alpha =\dfrac{\pi }{12}\] in the above formula we get
\[\tan \left( \dfrac{2\pi }{12} \right)=\dfrac{2\tan \left( \dfrac{\pi }{12} \right)}{1-{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}}\]
\[\tan \left( \dfrac{\pi }{6} \right)=\dfrac{2\tan \left( \dfrac{\pi }{12} \right)}{1-{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}}\] …….. (1)
We know that the value of \[\tan \left( \dfrac{\pi }{6} \right)\] is equal to \[\dfrac{1}{\sqrt{3}}\]
By substituting the above mentioned value in equation (1) we get,
\[\dfrac{1}{\sqrt{3}}=\dfrac{2\tan \left( \dfrac{\pi }{12} \right)}{1-{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}}\]
Cross multiply the above expression to obtain a quadratic expression of \[\tan \left( \dfrac{\pi }{12} \right)\].
\[1-{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}=\sqrt{3}\left( 2\tan \left( \dfrac{\pi }{12} \right) \right)\]
\[{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}+2\sqrt{3}\left( \tan \left( \dfrac{\pi }{12} \right) \right)-1=0\] …….. (2)
We know that the solutions of the general quadratic expression \[a{{x}^{2}}+bx+c=0\] are given by \[\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\]
On comparing the above expression with equation (2) we get,
The values of a = 1, b = \[2\sqrt{3}\], c = -1
Thus, the possible values of \[\tan \left( \dfrac{\pi }{12} \right)\] are equal to \[\dfrac{-2\sqrt{3}\pm \sqrt{{{\left( 2\sqrt{3} \right)}^{2}}-4(1)(-1)}}{2(1)}\]
We know that \[{{\left( ab \right)}^{m}}={{a}^{m}}\times {{b}^{m}}\]
\[=\dfrac{-2\sqrt{3}\pm \sqrt{\left( {{2}^{2}}\times 3 \right)+4}}{2}\]
\[=\dfrac{-2\sqrt{3}\pm \sqrt{12+4}}{2}\]
\[=\dfrac{-2\sqrt{3}\pm \sqrt{16}}{2}\]
\[=\dfrac{-2\sqrt{3}\pm 4}{2}\]
Since we know that the value of \[\sqrt{16}=\sqrt{4\times 4}=\sqrt{{{4}^{2}}}=4\].
\[\Rightarrow \tan \left( \dfrac{\pi }{12} \right)=\dfrac{2\left( -\sqrt{3}\pm 2 \right)}{2}\]
\[\tan \left( \dfrac{\pi }{12} \right)=-\sqrt{3}\pm 2\]
We know that \[\tan \alpha \] is positive in the interval \[0<\alpha <\dfrac{\pi }{2}\] . Thus, we get
\[\tan \left( \dfrac{\pi }{12} \right)=2-\sqrt{3}\]
\[\therefore \] The value of \[\tan \left( \dfrac{\pi }{12} \right)\] is equal to \[2-\sqrt{3}\]
Note: The possibility of mistake can be the calculation since the procedure of solving requires square root terms. The other possibility of mistake is not being able to choose the correct answer out of the obtained two values. The alternative way of solving can be, to calculate the value of \[\cos \left( \dfrac{\pi }{12} \right),\sin \left( \dfrac{\pi }{12} \right)\] since we know the value of \[\cos \left( \dfrac{\pi }{6} \right)\] is equal to \[\dfrac{\sqrt{3}}{2}\] . By substituting the values in the formula \[\cos 2\alpha =2{{\cos }^{2}}\alpha -1=1-2{{\sin }^{2}}\alpha \] , we can calculate the value of \[\cos \left( \dfrac{\pi }{12} \right),\sin \left( \dfrac{\pi }{12} \right)\]. Using the formula \[\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha }\] we can calculate the value of \[\tan \left( \dfrac{\pi }{12} \right)\]. This method eases the procedure of solving.
Complete step-by-step answer:
We know that the formula for \[\tan 2\alpha \] is given by \[\dfrac{2\tan \alpha }{1-{{\tan }^{2}}\alpha }\]
By substituting \[\alpha =\dfrac{\pi }{12}\] in the above formula we get
\[\tan \left( \dfrac{2\pi }{12} \right)=\dfrac{2\tan \left( \dfrac{\pi }{12} \right)}{1-{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}}\]
\[\tan \left( \dfrac{\pi }{6} \right)=\dfrac{2\tan \left( \dfrac{\pi }{12} \right)}{1-{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}}\] …….. (1)
We know that the value of \[\tan \left( \dfrac{\pi }{6} \right)\] is equal to \[\dfrac{1}{\sqrt{3}}\]
By substituting the above mentioned value in equation (1) we get,
\[\dfrac{1}{\sqrt{3}}=\dfrac{2\tan \left( \dfrac{\pi }{12} \right)}{1-{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}}\]
Cross multiply the above expression to obtain a quadratic expression of \[\tan \left( \dfrac{\pi }{12} \right)\].
\[1-{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}=\sqrt{3}\left( 2\tan \left( \dfrac{\pi }{12} \right) \right)\]
\[{{\left( \tan \left( \dfrac{\pi }{12} \right) \right)}^{2}}+2\sqrt{3}\left( \tan \left( \dfrac{\pi }{12} \right) \right)-1=0\] …….. (2)
We know that the solutions of the general quadratic expression \[a{{x}^{2}}+bx+c=0\] are given by \[\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\]
On comparing the above expression with equation (2) we get,
The values of a = 1, b = \[2\sqrt{3}\], c = -1
Thus, the possible values of \[\tan \left( \dfrac{\pi }{12} \right)\] are equal to \[\dfrac{-2\sqrt{3}\pm \sqrt{{{\left( 2\sqrt{3} \right)}^{2}}-4(1)(-1)}}{2(1)}\]
We know that \[{{\left( ab \right)}^{m}}={{a}^{m}}\times {{b}^{m}}\]
\[=\dfrac{-2\sqrt{3}\pm \sqrt{\left( {{2}^{2}}\times 3 \right)+4}}{2}\]
\[=\dfrac{-2\sqrt{3}\pm \sqrt{12+4}}{2}\]
\[=\dfrac{-2\sqrt{3}\pm \sqrt{16}}{2}\]
\[=\dfrac{-2\sqrt{3}\pm 4}{2}\]
Since we know that the value of \[\sqrt{16}=\sqrt{4\times 4}=\sqrt{{{4}^{2}}}=4\].
\[\Rightarrow \tan \left( \dfrac{\pi }{12} \right)=\dfrac{2\left( -\sqrt{3}\pm 2 \right)}{2}\]
\[\tan \left( \dfrac{\pi }{12} \right)=-\sqrt{3}\pm 2\]
We know that \[\tan \alpha \] is positive in the interval \[0<\alpha <\dfrac{\pi }{2}\] . Thus, we get
\[\tan \left( \dfrac{\pi }{12} \right)=2-\sqrt{3}\]
\[\therefore \] The value of \[\tan \left( \dfrac{\pi }{12} \right)\] is equal to \[2-\sqrt{3}\]
Note: The possibility of mistake can be the calculation since the procedure of solving requires square root terms. The other possibility of mistake is not being able to choose the correct answer out of the obtained two values. The alternative way of solving can be, to calculate the value of \[\cos \left( \dfrac{\pi }{12} \right),\sin \left( \dfrac{\pi }{12} \right)\] since we know the value of \[\cos \left( \dfrac{\pi }{6} \right)\] is equal to \[\dfrac{\sqrt{3}}{2}\] . By substituting the values in the formula \[\cos 2\alpha =2{{\cos }^{2}}\alpha -1=1-2{{\sin }^{2}}\alpha \] , we can calculate the value of \[\cos \left( \dfrac{\pi }{12} \right),\sin \left( \dfrac{\pi }{12} \right)\]. Using the formula \[\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha }\] we can calculate the value of \[\tan \left( \dfrac{\pi }{12} \right)\]. This method eases the procedure of solving.
Recently Updated Pages
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
The number of moles of KMnO4 that will be needed to class 11 chemistry JEE_Main
The oxidation process involves class 11 chemistry JEE_Main
A car starts from rest to cover a distance s The coefficient class 11 physics JEE_Main
The transalkenes are formed by the reduction of alkynes class 11 chemistry JEE_Main
At what temperature will the total KE of 03 mol of class 11 chemistry JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE