
Equation of oblique projectile can be written as:
Answer
424.2k+ views
Hint: In oblique projectile, horizontal plane of projectile motion is at some angle with the x- axis. As we get the equation of motion of the oblique projectile, we will simplify it in terms of x, R (range) and the angle of the projectile. First, we will multiply sin terms in the second term of the right-hand side of the equation, then simplify to make a formula of range in the denominator. This gives another form of equation of motion.
Complete answer:
A projectile is thrown with the velocity u at an angle $\theta$ with the x-axis. The velocity u can be resolved into two components $u cos \theta$ component along X-axis and $u sin \theta$ component along Y-axis.
$u_{x} = u cos \theta$ and $u_{y} = u sin \theta$
Equation of trajectory is:
$ y = x tan \theta - \dfrac{g x^{2} }{2 u^{2}cos^{2} \theta }$
Multiply by $sin \theta$ in the second term of the right-hand side.
$ y = x tan \theta - \dfrac{ x^{2} sin \theta }{\dfrac{2 sin \theta u^{2}cos^{2} \theta }{g} }$
$\implies y = x tan \theta - \dfrac{ x^{2} sin \theta }{ cos \theta \dfrac{ u^{2}sin 2 \theta }{g} }$
$\implies y = x tan \theta - \dfrac{x^{2} tan \theta}{R}$, R is the range of projectiles.
$\implies y = x tan \theta \left( 1 - \dfrac{x}{R} \right)$
Equation of oblique projectile can be written as
$ y = x tan \theta \left( 1 - \dfrac{x}{R} \right)$
Note:
When a particle is dropped in the air with speed, the only force performing on it during its air time is the acceleration due to gravity acting vertically downwards. There is no acceleration in the horizontal, which means that the particle's velocity in the horizontal direction lives constantly.
Complete answer:
A projectile is thrown with the velocity u at an angle $\theta$ with the x-axis. The velocity u can be resolved into two components $u cos \theta$ component along X-axis and $u sin \theta$ component along Y-axis.

$u_{x} = u cos \theta$ and $u_{y} = u sin \theta$
Equation of trajectory is:
$ y = x tan \theta - \dfrac{g x^{2} }{2 u^{2}cos^{2} \theta }$
Multiply by $sin \theta$ in the second term of the right-hand side.
$ y = x tan \theta - \dfrac{ x^{2} sin \theta }{\dfrac{2 sin \theta u^{2}cos^{2} \theta }{g} }$
$\implies y = x tan \theta - \dfrac{ x^{2} sin \theta }{ cos \theta \dfrac{ u^{2}sin 2 \theta }{g} }$
$\implies y = x tan \theta - \dfrac{x^{2} tan \theta}{R}$, R is the range of projectiles.
$\implies y = x tan \theta \left( 1 - \dfrac{x}{R} \right)$
Equation of oblique projectile can be written as
$ y = x tan \theta \left( 1 - \dfrac{x}{R} \right)$
Note:
When a particle is dropped in the air with speed, the only force performing on it during its air time is the acceleration due to gravity acting vertically downwards. There is no acceleration in the horizontal, which means that the particle's velocity in the horizontal direction lives constantly.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE
