Evaluate $\int {\sin x \cdot \sin 2x \cdot \sin 3xdx} $
Answer
Verified
501.3k+ views
Hint: Here as you can see the equation is in the form of $\sin A\sin B$, so we apply the formula and then simplify the integral.
Complete step-by-step answer:
As you know
$\sin A\sin B = \dfrac{1}{2}\left( {\cos \left( {A - B} \right) - \cos \left( {A + B} \right)} \right)$
Applying this, we get
$ \Rightarrow \int {\dfrac{1}{2}\left( {\cos \left( {x - 2x} \right) - \cos \left( {x + 2x} \right)} \right)\sin 3xdx} $
We know that $\cos ( - \theta ) = \cos (\theta )$
$ \Rightarrow \int {\dfrac{1}{2}\left( {\cos x - \cos 3x} \right)\sin 3xdx} $
Now break the integration
$ \Rightarrow \int {\dfrac{1}{2}\left( {\cos x\sin 3x} \right)dx - \int {\dfrac{1}{2}\left( {\cos 3x\sin 3x} \right)dx} } $
As you know,
$\cos A\sin B = \dfrac{1}{2}\left( {\sin \left( {B + A} \right) + \sin \left( {B - A} \right)} \right)$ , and $\sin A\cos A = \dfrac{1}{2}\sin 2A$
Applying this, we get
$ \Rightarrow \int {\dfrac{1}{2} \times \dfrac{1}{2}\left( {\sin \left( {3x + x} \right) + \sin \left( {3x - x} \right)} \right)dx} - \int {\dfrac{1}{2} \times \dfrac{1}{2}\left( {\sin 6x} \right)dx} $
Now again break the integrals
$ \Rightarrow \int {\dfrac{1}{4}\sin 4xdx + \int {\dfrac{1}{4}} \sin 2xdx} - \int {\dfrac{1}{4}\left( {\sin 6x} \right)dx} $
Now apply integration
As we know sin(ax) integration is $\dfrac{{ - \cos (ax)}}{a}$
$ \Rightarrow \dfrac{1}{4}\left( {\dfrac{{ - \cos 4x}}{4} + \dfrac{{ - \cos 2x}}{2} - \dfrac{{ - \cos 6x}}{6}} \right)$ + C
$ \Rightarrow \dfrac{1}{4}\left( { - \dfrac{{\cos 4x}}{4} - \dfrac{{\cos 2x}}{2} + \dfrac{{\cos 6x}}{6}} \right)$ + C
$ \Rightarrow \dfrac{1}{{48}}\left( { - 3\cos 4x - 6\cos 2x + 2\cos 6x} \right)$ + C
So, this is your required answer.
Note: In this type of question first apply the trigonometry formula, then simplify the integration you will get your answer. It can also be solved by applying integration by parts but it will be tedious.
Complete step-by-step answer:
As you know
$\sin A\sin B = \dfrac{1}{2}\left( {\cos \left( {A - B} \right) - \cos \left( {A + B} \right)} \right)$
Applying this, we get
$ \Rightarrow \int {\dfrac{1}{2}\left( {\cos \left( {x - 2x} \right) - \cos \left( {x + 2x} \right)} \right)\sin 3xdx} $
We know that $\cos ( - \theta ) = \cos (\theta )$
$ \Rightarrow \int {\dfrac{1}{2}\left( {\cos x - \cos 3x} \right)\sin 3xdx} $
Now break the integration
$ \Rightarrow \int {\dfrac{1}{2}\left( {\cos x\sin 3x} \right)dx - \int {\dfrac{1}{2}\left( {\cos 3x\sin 3x} \right)dx} } $
As you know,
$\cos A\sin B = \dfrac{1}{2}\left( {\sin \left( {B + A} \right) + \sin \left( {B - A} \right)} \right)$ , and $\sin A\cos A = \dfrac{1}{2}\sin 2A$
Applying this, we get
$ \Rightarrow \int {\dfrac{1}{2} \times \dfrac{1}{2}\left( {\sin \left( {3x + x} \right) + \sin \left( {3x - x} \right)} \right)dx} - \int {\dfrac{1}{2} \times \dfrac{1}{2}\left( {\sin 6x} \right)dx} $
Now again break the integrals
$ \Rightarrow \int {\dfrac{1}{4}\sin 4xdx + \int {\dfrac{1}{4}} \sin 2xdx} - \int {\dfrac{1}{4}\left( {\sin 6x} \right)dx} $
Now apply integration
As we know sin(ax) integration is $\dfrac{{ - \cos (ax)}}{a}$
$ \Rightarrow \dfrac{1}{4}\left( {\dfrac{{ - \cos 4x}}{4} + \dfrac{{ - \cos 2x}}{2} - \dfrac{{ - \cos 6x}}{6}} \right)$ + C
$ \Rightarrow \dfrac{1}{4}\left( { - \dfrac{{\cos 4x}}{4} - \dfrac{{\cos 2x}}{2} + \dfrac{{\cos 6x}}{6}} \right)$ + C
$ \Rightarrow \dfrac{1}{{48}}\left( { - 3\cos 4x - 6\cos 2x + 2\cos 6x} \right)$ + C
So, this is your required answer.
Note: In this type of question first apply the trigonometry formula, then simplify the integration you will get your answer. It can also be solved by applying integration by parts but it will be tedious.
Recently Updated Pages
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Trending doubts
Explain sex determination in humans with the help of class 12 biology CBSE
Give 10 examples of unisexual and bisexual flowers
How do you convert from joules to electron volts class 12 physics CBSE
Differentiate between internal fertilization and external class 12 biology CBSE
On what factors does the internal resistance of a cell class 12 physics CBSE
A 24 volt battery of internal resistance 4 ohm is connected class 12 physics CBSE