Answer
Verified
492k+ views
Hint: Here as you can see the equation is in the form of $\sin A\sin B$, so we apply the formula and then simplify the integral.
Complete step-by-step answer:
As you know
$\sin A\sin B = \dfrac{1}{2}\left( {\cos \left( {A - B} \right) - \cos \left( {A + B} \right)} \right)$
Applying this, we get
$ \Rightarrow \int {\dfrac{1}{2}\left( {\cos \left( {x - 2x} \right) - \cos \left( {x + 2x} \right)} \right)\sin 3xdx} $
We know that $\cos ( - \theta ) = \cos (\theta )$
$ \Rightarrow \int {\dfrac{1}{2}\left( {\cos x - \cos 3x} \right)\sin 3xdx} $
Now break the integration
$ \Rightarrow \int {\dfrac{1}{2}\left( {\cos x\sin 3x} \right)dx - \int {\dfrac{1}{2}\left( {\cos 3x\sin 3x} \right)dx} } $
As you know,
$\cos A\sin B = \dfrac{1}{2}\left( {\sin \left( {B + A} \right) + \sin \left( {B - A} \right)} \right)$ , and $\sin A\cos A = \dfrac{1}{2}\sin 2A$
Applying this, we get
$ \Rightarrow \int {\dfrac{1}{2} \times \dfrac{1}{2}\left( {\sin \left( {3x + x} \right) + \sin \left( {3x - x} \right)} \right)dx} - \int {\dfrac{1}{2} \times \dfrac{1}{2}\left( {\sin 6x} \right)dx} $
Now again break the integrals
$ \Rightarrow \int {\dfrac{1}{4}\sin 4xdx + \int {\dfrac{1}{4}} \sin 2xdx} - \int {\dfrac{1}{4}\left( {\sin 6x} \right)dx} $
Now apply integration
As we know sin(ax) integration is $\dfrac{{ - \cos (ax)}}{a}$
$ \Rightarrow \dfrac{1}{4}\left( {\dfrac{{ - \cos 4x}}{4} + \dfrac{{ - \cos 2x}}{2} - \dfrac{{ - \cos 6x}}{6}} \right)$ + C
$ \Rightarrow \dfrac{1}{4}\left( { - \dfrac{{\cos 4x}}{4} - \dfrac{{\cos 2x}}{2} + \dfrac{{\cos 6x}}{6}} \right)$ + C
$ \Rightarrow \dfrac{1}{{48}}\left( { - 3\cos 4x - 6\cos 2x + 2\cos 6x} \right)$ + C
So, this is your required answer.
Note: In this type of question first apply the trigonometry formula, then simplify the integration you will get your answer. It can also be solved by applying integration by parts but it will be tedious.
Complete step-by-step answer:
As you know
$\sin A\sin B = \dfrac{1}{2}\left( {\cos \left( {A - B} \right) - \cos \left( {A + B} \right)} \right)$
Applying this, we get
$ \Rightarrow \int {\dfrac{1}{2}\left( {\cos \left( {x - 2x} \right) - \cos \left( {x + 2x} \right)} \right)\sin 3xdx} $
We know that $\cos ( - \theta ) = \cos (\theta )$
$ \Rightarrow \int {\dfrac{1}{2}\left( {\cos x - \cos 3x} \right)\sin 3xdx} $
Now break the integration
$ \Rightarrow \int {\dfrac{1}{2}\left( {\cos x\sin 3x} \right)dx - \int {\dfrac{1}{2}\left( {\cos 3x\sin 3x} \right)dx} } $
As you know,
$\cos A\sin B = \dfrac{1}{2}\left( {\sin \left( {B + A} \right) + \sin \left( {B - A} \right)} \right)$ , and $\sin A\cos A = \dfrac{1}{2}\sin 2A$
Applying this, we get
$ \Rightarrow \int {\dfrac{1}{2} \times \dfrac{1}{2}\left( {\sin \left( {3x + x} \right) + \sin \left( {3x - x} \right)} \right)dx} - \int {\dfrac{1}{2} \times \dfrac{1}{2}\left( {\sin 6x} \right)dx} $
Now again break the integrals
$ \Rightarrow \int {\dfrac{1}{4}\sin 4xdx + \int {\dfrac{1}{4}} \sin 2xdx} - \int {\dfrac{1}{4}\left( {\sin 6x} \right)dx} $
Now apply integration
As we know sin(ax) integration is $\dfrac{{ - \cos (ax)}}{a}$
$ \Rightarrow \dfrac{1}{4}\left( {\dfrac{{ - \cos 4x}}{4} + \dfrac{{ - \cos 2x}}{2} - \dfrac{{ - \cos 6x}}{6}} \right)$ + C
$ \Rightarrow \dfrac{1}{4}\left( { - \dfrac{{\cos 4x}}{4} - \dfrac{{\cos 2x}}{2} + \dfrac{{\cos 6x}}{6}} \right)$ + C
$ \Rightarrow \dfrac{1}{{48}}\left( { - 3\cos 4x - 6\cos 2x + 2\cos 6x} \right)$ + C
So, this is your required answer.
Note: In this type of question first apply the trigonometry formula, then simplify the integration you will get your answer. It can also be solved by applying integration by parts but it will be tedious.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE