
Evaluate $ \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)dx} $
Answer
573.9k+ views
Hint: To solve the above expression, we will use the concept of definite integral. Every definite integral has a solution with a unique value. Definite integral is expressed as $ \int\limits_a^b {f\left( x \right)dx} $ .
Where, $ a $ is the lower limit and $ b $ is the upper limit.
The definite integral is given as:
$ \begin{array}{c}
\int\limits_a^b {f\left( x \right)dx} = \left[ {F\left( x \right)} \right]_a^b\\
= F\left( b \right) - F\left( a \right)
\end{array} $
We will also use the following property of the definite integral:
$ \int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx $
We will use the above relation to evaluate the integral in a simpler form. Also property of logarithm is used to get the results.
Complete step-by-step answer:
Given: The given integral is $ \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)} dx $ .
We will assume $ I $ as the integral of $ \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)} dx $ .
$ I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)} dx $
We will use the property of definite integral which is given as,
$ \int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx $
In the given expression we have $ \dfrac{\pi }{2} $ for $ a $ and $ \tan x $ for $ f\left( x \right) $ . So we will substitute these values in the above property.
\[\begin{array}{l}
I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)} dx\\
I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left\{ {\tan \left( {\dfrac{\pi }{2} - x} \right)} \right\}} dx
\end{array}\]
We know that $ \tan \left( {\dfrac{\pi }{2} - x} \right) $ equals to $ \cot x $ . We substitute $ \cot x $ for $ \tan \left( {\dfrac{\pi }{2} - x} \right) $ in the above expression.
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\cot x} \right)dx} \]
We will rewrite the above expression in the $ \tan x $ form since $ \cot x $ is the inverse of $ \tan x $ .
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log {{\left( {\tan x} \right)}^{ - 1}}dx} \]
Since, from the property of log we know that $ \log {m^n} = n\log m $ , We will apply this property in the above expression.
\[I = - \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)dx} \]
But according to our assumption, we have assumed $ I $ for \[\int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)dx} \].
On substituting $ I $ for \[\int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)dx} \]in the above expression we will get,
$ \begin{array}{c}
I = - I\\
2I = 0\\
I = 0
\end{array} $
Hence, the value of integral \[\int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)dx} \] is 0.
Note: In order to evaluate the integral, always use the property of definite integrals. There are a certain number of properties of definite integrals which can be used to simplify the problem. This problem can also be solved by adding \[\int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\cot x} \right)dx} \] for $ I $ and \[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)dx} \] for $ I $ , which will give \[2I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x + \cot x} \right)dx} \] , Under the given limits the value will be 0.
Where, $ a $ is the lower limit and $ b $ is the upper limit.
The definite integral is given as:
$ \begin{array}{c}
\int\limits_a^b {f\left( x \right)dx} = \left[ {F\left( x \right)} \right]_a^b\\
= F\left( b \right) - F\left( a \right)
\end{array} $
We will also use the following property of the definite integral:
$ \int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx $
We will use the above relation to evaluate the integral in a simpler form. Also property of logarithm is used to get the results.
Complete step-by-step answer:
Given: The given integral is $ \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)} dx $ .
We will assume $ I $ as the integral of $ \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)} dx $ .
$ I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)} dx $
We will use the property of definite integral which is given as,
$ \int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx $
In the given expression we have $ \dfrac{\pi }{2} $ for $ a $ and $ \tan x $ for $ f\left( x \right) $ . So we will substitute these values in the above property.
\[\begin{array}{l}
I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)} dx\\
I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left\{ {\tan \left( {\dfrac{\pi }{2} - x} \right)} \right\}} dx
\end{array}\]
We know that $ \tan \left( {\dfrac{\pi }{2} - x} \right) $ equals to $ \cot x $ . We substitute $ \cot x $ for $ \tan \left( {\dfrac{\pi }{2} - x} \right) $ in the above expression.
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\cot x} \right)dx} \]
We will rewrite the above expression in the $ \tan x $ form since $ \cot x $ is the inverse of $ \tan x $ .
\[I = \int\limits_0^{\dfrac{\pi }{2}} {\log {{\left( {\tan x} \right)}^{ - 1}}dx} \]
Since, from the property of log we know that $ \log {m^n} = n\log m $ , We will apply this property in the above expression.
\[I = - \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)dx} \]
But according to our assumption, we have assumed $ I $ for \[\int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)dx} \].
On substituting $ I $ for \[\int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)dx} \]in the above expression we will get,
$ \begin{array}{c}
I = - I\\
2I = 0\\
I = 0
\end{array} $
Hence, the value of integral \[\int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)dx} \] is 0.
Note: In order to evaluate the integral, always use the property of definite integrals. There are a certain number of properties of definite integrals which can be used to simplify the problem. This problem can also be solved by adding \[\int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\cot x} \right)dx} \] for $ I $ and \[I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x} \right)dx} \] for $ I $ , which will give \[2I = \int\limits_0^{\dfrac{\pi }{2}} {\log \left( {\tan x + \cot x} \right)dx} \] , Under the given limits the value will be 0.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

