Evaluate the definite integral given as \[\int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx\].
Answer
Verified
125.1k+ views
Hint: We start solving the problems by recalling the properties of modulus function and we write functions for $\left| x-1 \right|$, $\left| x-2 \right|$ and $\left| x-3 \right|$ in the intervals that were present as limits for definite integral. We divide the definite integral into two or more parts based on the modulus functions obtained. We substitute the functions obtained in the place of modulus functions in integral. Now, we do the integration and substitute the limits to get the required value.
Complete step-by-step solution:
According to the problem, we need to find the value of the definite integral \[\int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx\] ------(1).
Let us first learn about the properties of modulus function. We know that the value of $\left| x-a \right|$ varies as \[\left| x-a \right|=\left\{ \begin{matrix}
\left( x-a \right)\text{, for x> a} \\
0\text{, for x=a} \\
-\left( x-a \right)\text{, for x< a} \\
\end{matrix} \right.\].
Using the properties of $\left| x-a \right|$, we check the variations of functions $\left| x-1 \right|$, $\left| x-2 \right|$ and $\left| x-3 \right|$ in the intervals that were given in integration.
From the limits of the integral, we can see that the interval of x lies in between 1 and 3 i.e., $1< x< 3$.
We find the variation in function for $\left| x-1 \right|$ in the interval $1< x <3$.
So, the function $\left| x-1 \right|$ is written as \[\left| x-1 \right|=\left\{ \left( x-1 \right)\text{, for }1< x <3 \right.\] ---------(2).
Now, we find the variation in function for $\left| x-2 \right|$ in the interval $1< x <3$.
So, the function $\left| x-2 \right|$ is written as \[\left| x-2 \right|=\left\{ \begin{matrix}
-\left( x-2 \right),\text{ for }1< x< 2 \\
\left( x-2 \right),\text{ for }2< x< 3 \\
\end{matrix} \right.\] ------(3).
Now, we find the variation in function for $\left| x-3 \right|$ in the interval $1< x <3$.
So, the function $\left| x-3 \right|$ is written as \[\left| x-3 \right|=\left\{ -\left( x-3 \right),\text{ for }1< x <3 \right.\] ---(4).
We know that for $a< bNow, we divide the given definite integral into two intervals as shown below:
\[\int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\int\limits_{1}^{2}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx+\int\limits_{2}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx\].
Now, we use the functions that we have obtained in equation (2), (3), and (4) in the given definite integral.
\[\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\int\limits_{1}^{2}{\left[ \left( x-1 \right)-\left( x-2 \right)-\left( x-3 \right) \right]}dx+\int\limits_{2}^{3}{\left[ \left( x-1 \right)+\left( x-2 \right)-\left( x-3 \right) \right]}dx\].
\[\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\int\limits_{1}^{2}{\left[ x-1-x+2-x+3 \right]}dx+\int\limits_{2}^{3}{\left[ x-1+x-2-x+3 \right]}dx\].
\[\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\int\limits_{1}^{2}{\left[ -x+4 \right]}dx+\int\limits_{2}^{3}{\left[ x \right]}dx\] --------(5).
We know that $\int{{{\left( a-x \right)}^{n}}dx=\dfrac{-{{\left( a-x \right)}^{n+1}}}{n+1}+c}$, $\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}+C}$ and $\int\limits_{a}^{b}{{{f}^{'}}\left( x \right)dx=f\left( b \right)-f}\left( a \right)$. We use all these results in equation (5).
\[\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\left. \dfrac{-{{\left( 4-x \right)}^{2}}}{2} \right|_{1}^{2}+\left. \dfrac{{{x}^{2}}}{2} \right|_{2}^{3}\].
\[\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\left( \dfrac{-{{\left( 4-2 \right)}^{2}}}{2} \right)-\left( \dfrac{-{{\left( 4-1 \right)}^{2}}}{2} \right)+\left( \dfrac{{{3}^{2}}}{2} \right)-\left( \dfrac{{{2}^{2}}}{2} \right)\].
\[\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\left( \dfrac{-4}{2} \right)+\left( \dfrac{9}{2} \right)+\left( \dfrac{9}{2} \right)-\left( \dfrac{4}{2} \right)\].
\[\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\left( \dfrac{-4+9+9-4}{2} \right)\].
\[\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\left( \dfrac{10}{2} \right)\].
\[\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=5\].
$\therefore$We have got the value of definite integral \[\int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx\] as 5.
Note: We should not take $\left[ { } \right]$ as greatest integer function unless it is mentioned in the problem. We should not integrate taking limits directly from 1 to 3 as the functions are changing. We should not make mistakes or confuse with the sign changes that were present while integrating.
Complete step-by-step solution:
According to the problem, we need to find the value of the definite integral \[\int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx\] ------(1).
Let us first learn about the properties of modulus function. We know that the value of $\left| x-a \right|$ varies as \[\left| x-a \right|=\left\{ \begin{matrix}
\left( x-a \right)\text{, for x> a} \\
0\text{, for x=a} \\
-\left( x-a \right)\text{, for x< a} \\
\end{matrix} \right.\].
Using the properties of $\left| x-a \right|$, we check the variations of functions $\left| x-1 \right|$, $\left| x-2 \right|$ and $\left| x-3 \right|$ in the intervals that were given in integration.
From the limits of the integral, we can see that the interval of x lies in between 1 and 3 i.e., $1< x< 3$.
We find the variation in function for $\left| x-1 \right|$ in the interval $1< x <3$.
So, the function $\left| x-1 \right|$ is written as \[\left| x-1 \right|=\left\{ \left( x-1 \right)\text{, for }1< x <3 \right.\] ---------(2).
Now, we find the variation in function for $\left| x-2 \right|$ in the interval $1< x <3$.
So, the function $\left| x-2 \right|$ is written as \[\left| x-2 \right|=\left\{ \begin{matrix}
-\left( x-2 \right),\text{ for }1< x< 2 \\
\left( x-2 \right),\text{ for }2< x< 3 \\
\end{matrix} \right.\] ------(3).
Now, we find the variation in function for $\left| x-3 \right|$ in the interval $1< x <3$.
So, the function $\left| x-3 \right|$ is written as \[\left| x-3 \right|=\left\{ -\left( x-3 \right),\text{ for }1< x <3 \right.\] ---(4).
We know that for $a< b
\[\int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\int\limits_{1}^{2}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx+\int\limits_{2}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx\].
Now, we use the functions that we have obtained in equation (2), (3), and (4) in the given definite integral.
\[\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\int\limits_{1}^{2}{\left[ \left( x-1 \right)-\left( x-2 \right)-\left( x-3 \right) \right]}dx+\int\limits_{2}^{3}{\left[ \left( x-1 \right)+\left( x-2 \right)-\left( x-3 \right) \right]}dx\].
\[\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\int\limits_{1}^{2}{\left[ x-1-x+2-x+3 \right]}dx+\int\limits_{2}^{3}{\left[ x-1+x-2-x+3 \right]}dx\].
\[\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\int\limits_{1}^{2}{\left[ -x+4 \right]}dx+\int\limits_{2}^{3}{\left[ x \right]}dx\] --------(5).
We know that $\int{{{\left( a-x \right)}^{n}}dx=\dfrac{-{{\left( a-x \right)}^{n+1}}}{n+1}+c}$, $\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}+C}$ and $\int\limits_{a}^{b}{{{f}^{'}}\left( x \right)dx=f\left( b \right)-f}\left( a \right)$. We use all these results in equation (5).
\[\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\left. \dfrac{-{{\left( 4-x \right)}^{2}}}{2} \right|_{1}^{2}+\left. \dfrac{{{x}^{2}}}{2} \right|_{2}^{3}\].
\[\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\left( \dfrac{-{{\left( 4-2 \right)}^{2}}}{2} \right)-\left( \dfrac{-{{\left( 4-1 \right)}^{2}}}{2} \right)+\left( \dfrac{{{3}^{2}}}{2} \right)-\left( \dfrac{{{2}^{2}}}{2} \right)\].
\[\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\left( \dfrac{-4}{2} \right)+\left( \dfrac{9}{2} \right)+\left( \dfrac{9}{2} \right)-\left( \dfrac{4}{2} \right)\].
\[\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\left( \dfrac{-4+9+9-4}{2} \right)\].
\[\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=\left( \dfrac{10}{2} \right)\].
\[\Rightarrow \int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx=5\].
$\therefore$We have got the value of definite integral \[\int\limits_{1}^{3}{\left[ \left| x-1 \right|+\left| x-2 \right|+\left| x-3 \right| \right]}dx\] as 5.
Note: We should not take $\left[ { } \right]$ as greatest integer function unless it is mentioned in the problem. We should not integrate taking limits directly from 1 to 3 as the functions are changing. We should not make mistakes or confuse with the sign changes that were present while integrating.
Recently Updated Pages
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation
JEE Energetics Important Concepts and Tips for Exam Preparation
JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation
JEE General Topics in Chemistry Important Concepts and Tips
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Ideal and Non-Ideal Solutions Raoult's Law - JEE
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
Degree of Dissociation and Its Formula With Solved Example for JEE
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation