
Evaluate the determinant to the closest integer: $A=\left[ \begin{matrix}
{{\log }_{3}}512 & {{\log }_{4}}3 \\
{{\log }_{3}}8 & {{\log }_{4}}9 \\
\end{matrix} \right]$.
Answer
573.6k+ views
Hint: We start solving the problem by recalling the determinant of the matrix $\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]$ as $\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|=\left( a\times d \right)-\left( b\times c \right)$. We use this definition for the matrix and make use of the result ${{\log }_{{{a}^{m}}}}{{b}^{n}}=\dfrac{n}{m}{{\log }_{a}}b$ to proceed through the problem. We then make use of the result ${{\log }_{a}}b\times {{\log }_{b}}a=1$ and make necessary calculations to find the required value of the determinant.
Complete step by step answer:
According to the problem, we need to find the determinant of the given matrix $A=\left[ \begin{matrix}
{{\log }_{3}}512 & {{\log }_{4}}3 \\
{{\log }_{3}}8 & {{\log }_{4}}9 \\
\end{matrix} \right]$ and find its closest integer.
We know that the determinant of the matrix $\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]$ is defined as $\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|=\left( a\times d \right)-\left( b\times c \right)$. Let us use this definition for finding the determinant of matrix A.
So, we have $\left| A \right|=\left| \begin{matrix}
{{\log }_{3}}512 & {{\log }_{4}}3 \\
{{\log }_{3}}8 & {{\log }_{4}}9 \\
\end{matrix} \right|$.
$\Rightarrow \left| A \right|=\left( {{\log }_{3}}512\times {{\log }_{4}}9 \right)-\left( {{\log }_{3}}8\times {{\log }_{4}}3 \right)$.
$\Rightarrow \left| A \right|=\left( {{\log }_{3}}{{2}^{9}}\times {{\log }_{{{2}^{2}}}}{{3}^{2}} \right)-\left( {{\log }_{3}}{{2}^{3}}\times {{\log }_{{{2}^{2}}}}3 \right)$ ---(1).
We know that ${{\log }_{{{a}^{m}}}}{{b}^{n}}=\dfrac{n}{m}{{\log }_{a}}b$. We use this result in equation (1).
$\Rightarrow \left| A \right|=\left( \left( \dfrac{9}{1}{{\log }_{3}}2 \right)\times \left( \dfrac{2}{2}{{\log }_{2}}3 \right) \right)-\left( \left( \dfrac{3}{1}{{\log }_{3}}2 \right)\times \left( \dfrac{1}{2}{{\log }_{2}}3 \right) \right)$.
$\Rightarrow \left| A \right|=\left( \left( 9{{\log }_{3}}2 \right)\times \left( {{\log }_{2}}3 \right) \right)-\left( \left( 3{{\log }_{3}}2 \right)\times \left( \dfrac{1}{2}{{\log }_{2}}3 \right) \right)$.
$\Rightarrow \left| A \right|=9\left( {{\log }_{3}}2\times {{\log }_{2}}3 \right)-\dfrac{3}{2}\left( {{\log }_{3}}2\times {{\log }_{2}}3 \right)$ ---(2).
We know that ${{\log }_{a}}b\times {{\log }_{b}}a=1$. We use this result in equation (2).
$\Rightarrow \left| A \right|=9\left( 1 \right)-\dfrac{3}{2}\left( 1 \right)$.
$\Rightarrow \left| A \right|=9-\dfrac{3}{2}$.
$\Rightarrow \left| A \right|=\dfrac{18-3}{2}$.
$\Rightarrow \left| A \right|=\dfrac{15}{2}$.
$\Rightarrow \left| A \right|=7.5$.
We know that the closest integer(s) to 7.5 is 7 or 8.
∴ The closest integer(s) to the determinant of matrix $A=\left[ \begin{matrix}
{{\log }_{3}}512 & {{\log }_{4}}3 \\
{{\log }_{3}}8 & {{\log }_{4}}9 \\
\end{matrix} \right]$ is 7 or 8.
Note: We can prove ${{\log }_{a}}b\times {{\log }_{b}}a=1$ by using the fact ${{\log }_{a}}b=\dfrac{{{\log }_{e}}b}{{{\log }_{e}}a}$. We can see that the given problem contains a heavy amount of calculation, so we need to perform each step carefully. We should not confuse $\left| A \right|$ with modulus of A and take only positive value for the determinant which is the most common mistake done by students. We can see that the obtained determinant is the middle value of the integers 7 and 8 which is the reason why we had taken both integers as closest.
a & b \\
c & d \\
\end{matrix} \right]$ as $\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|=\left( a\times d \right)-\left( b\times c \right)$. We use this definition for the matrix and make use of the result ${{\log }_{{{a}^{m}}}}{{b}^{n}}=\dfrac{n}{m}{{\log }_{a}}b$ to proceed through the problem. We then make use of the result ${{\log }_{a}}b\times {{\log }_{b}}a=1$ and make necessary calculations to find the required value of the determinant.
Complete step by step answer:
According to the problem, we need to find the determinant of the given matrix $A=\left[ \begin{matrix}
{{\log }_{3}}512 & {{\log }_{4}}3 \\
{{\log }_{3}}8 & {{\log }_{4}}9 \\
\end{matrix} \right]$ and find its closest integer.
We know that the determinant of the matrix $\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]$ is defined as $\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|=\left( a\times d \right)-\left( b\times c \right)$. Let us use this definition for finding the determinant of matrix A.
So, we have $\left| A \right|=\left| \begin{matrix}
{{\log }_{3}}512 & {{\log }_{4}}3 \\
{{\log }_{3}}8 & {{\log }_{4}}9 \\
\end{matrix} \right|$.
$\Rightarrow \left| A \right|=\left( {{\log }_{3}}512\times {{\log }_{4}}9 \right)-\left( {{\log }_{3}}8\times {{\log }_{4}}3 \right)$.
$\Rightarrow \left| A \right|=\left( {{\log }_{3}}{{2}^{9}}\times {{\log }_{{{2}^{2}}}}{{3}^{2}} \right)-\left( {{\log }_{3}}{{2}^{3}}\times {{\log }_{{{2}^{2}}}}3 \right)$ ---(1).
We know that ${{\log }_{{{a}^{m}}}}{{b}^{n}}=\dfrac{n}{m}{{\log }_{a}}b$. We use this result in equation (1).
$\Rightarrow \left| A \right|=\left( \left( \dfrac{9}{1}{{\log }_{3}}2 \right)\times \left( \dfrac{2}{2}{{\log }_{2}}3 \right) \right)-\left( \left( \dfrac{3}{1}{{\log }_{3}}2 \right)\times \left( \dfrac{1}{2}{{\log }_{2}}3 \right) \right)$.
$\Rightarrow \left| A \right|=\left( \left( 9{{\log }_{3}}2 \right)\times \left( {{\log }_{2}}3 \right) \right)-\left( \left( 3{{\log }_{3}}2 \right)\times \left( \dfrac{1}{2}{{\log }_{2}}3 \right) \right)$.
$\Rightarrow \left| A \right|=9\left( {{\log }_{3}}2\times {{\log }_{2}}3 \right)-\dfrac{3}{2}\left( {{\log }_{3}}2\times {{\log }_{2}}3 \right)$ ---(2).
We know that ${{\log }_{a}}b\times {{\log }_{b}}a=1$. We use this result in equation (2).
$\Rightarrow \left| A \right|=9\left( 1 \right)-\dfrac{3}{2}\left( 1 \right)$.
$\Rightarrow \left| A \right|=9-\dfrac{3}{2}$.
$\Rightarrow \left| A \right|=\dfrac{18-3}{2}$.
$\Rightarrow \left| A \right|=\dfrac{15}{2}$.
$\Rightarrow \left| A \right|=7.5$.
We know that the closest integer(s) to 7.5 is 7 or 8.
∴ The closest integer(s) to the determinant of matrix $A=\left[ \begin{matrix}
{{\log }_{3}}512 & {{\log }_{4}}3 \\
{{\log }_{3}}8 & {{\log }_{4}}9 \\
\end{matrix} \right]$ is 7 or 8.
Note: We can prove ${{\log }_{a}}b\times {{\log }_{b}}a=1$ by using the fact ${{\log }_{a}}b=\dfrac{{{\log }_{e}}b}{{{\log }_{e}}a}$. We can see that the given problem contains a heavy amount of calculation, so we need to perform each step carefully. We should not confuse $\left| A \right|$ with modulus of A and take only positive value for the determinant which is the most common mistake done by students. We can see that the obtained determinant is the middle value of the integers 7 and 8 which is the reason why we had taken both integers as closest.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

