Answer
Verified
499.2k+ views
Hint: First check if the limit has an indeterminate form. If it does, only then move on to applying the L’ Hopital Rule.
The given equation is;
\[\underset{x\to \sqrt{2}}{\mathop{\lim }}\,\dfrac{\sqrt{3+2x}-(\sqrt{2}+1)}{{{x}^{2}}-2}\]
Firstly, let’s check if the given limit evaluates to an indeterminate form when we put
$x=\sqrt{2}$. Let’s do that now. Doing so, we’ll have to put $x=\sqrt{2}$ in the expression
\[\underset{x\to \sqrt{2}}{\mathop{\lim }}\,\dfrac{\sqrt{3+2x}-(\sqrt{2}+1)}{{{x}^{2}}-2}\]
\[\to \dfrac{\sqrt{3+2\sqrt{2}}-\left( \sqrt{2}+1 \right)}{\left( {{x}^{2}}-2 \right)}\]
\[\to \dfrac{\sqrt{3+2\sqrt{2}}-\left( \sqrt{2}+1 \right)}{0}\]
Here, we can clearly see that the denominator does equate to zero on putting the limiting value
of $x$.
Now, the numerator doesn’t look like it evaluates to zero, right ? Let’s try manipulating the
numerator alone, after we put the value $x=\sqrt{2}$ in it.
Thus, we have $\sqrt{3+2\sqrt{2}}-(\sqrt{2}+1)$
$\to \sqrt{2+1+2\sqrt{2}}-\left( \sqrt{2}+1 \right)$
$\to \sqrt{{{\left( \sqrt{2} \right)}^{2}}+{{1}^{2}}+2\sqrt{2}}-\left( \sqrt{2}+1 \right)$
The first term looks similar to the identity $\left( {{a}^{2}}+{{b}^{2}}+2ab \right)={{\left( a+b
\right)}^{2}}$
$\to \sqrt{{{\left( \sqrt{2}+1 \right)}^{2}}}-\left( \sqrt{2}+1 \right)$
$\to{\left( \sqrt{2}+1 \right)}-{\left( \sqrt{2}+1 \right)}=0$
That becomes $0$. Hence the numerator also evaluates to zero on putting the limiting value of
$x$ in it.
Thus, we now can confirm that the limit ultimately evaluates to a $\dfrac{0}{0}$ form. Hence, it
fulfils the condition of using the L’ Hopital Rule, since the rule needs that the limit evaluates to
a $\dfrac{0}{0}$ or an $\dfrac{\infty }{\infty }$ form.
Now, by using L’HOPITAL RULE, i.e., the limit of a function evaluating to a $\dfrac{0}{0}$ or an
$\dfrac{\infty }{\infty }$ form, can be found out by separately differentiating the numerators
and denominators in terms of the variable that has the limit attached to it, successively, till the
indeterminate form goes away.
Thus, we’ll apply L’ Hopital Rule for the first time now.
Therefore, $\underset{x\to \sqrt{2}}{\mathop{\lim }}\,\dfrac{\dfrac{d(\sqrt{3+2x}-
(\sqrt{2}+1))}{dx}}{\dfrac{d({{x}^{2}}-2)}{dx}}$
By power rule & chain rule, we get;
$\to \underset{x\to \sqrt{2}}{\mathop{\lim }}\,\dfrac{1}{2\sqrt{3+2x}}.\dfrac{2-0}{2x-0}$
$\to \underset{x\to \sqrt{2}}{\mathop{\lim
}}\,\dfrac{\dfrac{1}{{2}\sqrt{3+2x}}.{2}-0}{2x-0}$
$\to \underset{x\to \sqrt{2}}{\mathop{\lim }}\,\dfrac{1}{2x\sqrt{3+2x}}$
Now, putting the limits, we get;
$\to \dfrac{1}{2\sqrt{2}\left( \sqrt{3+2\sqrt{2}} \right)}$
$\to \dfrac{1}{2\sqrt{2}\sqrt{{{\left( \sqrt{2} \right)}^{2}}+{{1}^{2}}+2\sqrt{2}}}$
$\to \dfrac{1}{2\sqrt{2}\sqrt{{{\left( \sqrt{2}+1 \right)}^{2}}}}$
$\to \dfrac{1}{2\sqrt{2}\left( \sqrt{2}+1 \right)}$
$\to \dfrac{1}{4+2\sqrt{2}}$
Now, we will do rationalisation. Let’s multiply the numerator and denominator by the
conjugate of $4+2\sqrt{2}$. That means, we multiply numerator and denominator with $4-
2\sqrt{2}$. Doing so, we get:
$\to \dfrac{1}{\left( 4+2\sqrt{2} \right)}\times \dfrac{\left( 4-2\sqrt{2} \right)}{\left( 4-2\sqrt{2}
\right)}$
$\to \dfrac{4-2\sqrt{2}}{{{4}^{2}}-{{\left( 2\sqrt{2} \right)}^{2}}}$
$\to \dfrac{4-2\sqrt{2}}{16-8}$
$\to \dfrac{4-2\sqrt{2}}{8}$
$\to \dfrac{2-\sqrt{2}}{4}$
Hence, the solution for the equation is $\dfrac{2-\sqrt{2}}{4}$.
Note: Always check first by putting limits, if the limit evaluates to an indeterminate form, and
then, remember L-HOSPITAL RULE :
i.e., $\underset{x\to a}{\mathop{\lim }}\,\dfrac{f(x)}{g(x)}=\underset{x\to a}{\mathop{\lim
}}\,\dfrac{f'(x)}{g'(x)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f''(x)}{g''(x)}=.....$, till the limit
loses its indeterminate form.
The given equation is;
\[\underset{x\to \sqrt{2}}{\mathop{\lim }}\,\dfrac{\sqrt{3+2x}-(\sqrt{2}+1)}{{{x}^{2}}-2}\]
Firstly, let’s check if the given limit evaluates to an indeterminate form when we put
$x=\sqrt{2}$. Let’s do that now. Doing so, we’ll have to put $x=\sqrt{2}$ in the expression
\[\underset{x\to \sqrt{2}}{\mathop{\lim }}\,\dfrac{\sqrt{3+2x}-(\sqrt{2}+1)}{{{x}^{2}}-2}\]
\[\to \dfrac{\sqrt{3+2\sqrt{2}}-\left( \sqrt{2}+1 \right)}{\left( {{x}^{2}}-2 \right)}\]
\[\to \dfrac{\sqrt{3+2\sqrt{2}}-\left( \sqrt{2}+1 \right)}{0}\]
Here, we can clearly see that the denominator does equate to zero on putting the limiting value
of $x$.
Now, the numerator doesn’t look like it evaluates to zero, right ? Let’s try manipulating the
numerator alone, after we put the value $x=\sqrt{2}$ in it.
Thus, we have $\sqrt{3+2\sqrt{2}}-(\sqrt{2}+1)$
$\to \sqrt{2+1+2\sqrt{2}}-\left( \sqrt{2}+1 \right)$
$\to \sqrt{{{\left( \sqrt{2} \right)}^{2}}+{{1}^{2}}+2\sqrt{2}}-\left( \sqrt{2}+1 \right)$
The first term looks similar to the identity $\left( {{a}^{2}}+{{b}^{2}}+2ab \right)={{\left( a+b
\right)}^{2}}$
$\to \sqrt{{{\left( \sqrt{2}+1 \right)}^{2}}}-\left( \sqrt{2}+1 \right)$
$\to{\left( \sqrt{2}+1 \right)}-{\left( \sqrt{2}+1 \right)}=0$
That becomes $0$. Hence the numerator also evaluates to zero on putting the limiting value of
$x$ in it.
Thus, we now can confirm that the limit ultimately evaluates to a $\dfrac{0}{0}$ form. Hence, it
fulfils the condition of using the L’ Hopital Rule, since the rule needs that the limit evaluates to
a $\dfrac{0}{0}$ or an $\dfrac{\infty }{\infty }$ form.
Now, by using L’HOPITAL RULE, i.e., the limit of a function evaluating to a $\dfrac{0}{0}$ or an
$\dfrac{\infty }{\infty }$ form, can be found out by separately differentiating the numerators
and denominators in terms of the variable that has the limit attached to it, successively, till the
indeterminate form goes away.
Thus, we’ll apply L’ Hopital Rule for the first time now.
Therefore, $\underset{x\to \sqrt{2}}{\mathop{\lim }}\,\dfrac{\dfrac{d(\sqrt{3+2x}-
(\sqrt{2}+1))}{dx}}{\dfrac{d({{x}^{2}}-2)}{dx}}$
By power rule & chain rule, we get;
$\to \underset{x\to \sqrt{2}}{\mathop{\lim }}\,\dfrac{1}{2\sqrt{3+2x}}.\dfrac{2-0}{2x-0}$
$\to \underset{x\to \sqrt{2}}{\mathop{\lim
}}\,\dfrac{\dfrac{1}{{2}\sqrt{3+2x}}.{2}-0}{2x-0}$
$\to \underset{x\to \sqrt{2}}{\mathop{\lim }}\,\dfrac{1}{2x\sqrt{3+2x}}$
Now, putting the limits, we get;
$\to \dfrac{1}{2\sqrt{2}\left( \sqrt{3+2\sqrt{2}} \right)}$
$\to \dfrac{1}{2\sqrt{2}\sqrt{{{\left( \sqrt{2} \right)}^{2}}+{{1}^{2}}+2\sqrt{2}}}$
$\to \dfrac{1}{2\sqrt{2}\sqrt{{{\left( \sqrt{2}+1 \right)}^{2}}}}$
$\to \dfrac{1}{2\sqrt{2}\left( \sqrt{2}+1 \right)}$
$\to \dfrac{1}{4+2\sqrt{2}}$
Now, we will do rationalisation. Let’s multiply the numerator and denominator by the
conjugate of $4+2\sqrt{2}$. That means, we multiply numerator and denominator with $4-
2\sqrt{2}$. Doing so, we get:
$\to \dfrac{1}{\left( 4+2\sqrt{2} \right)}\times \dfrac{\left( 4-2\sqrt{2} \right)}{\left( 4-2\sqrt{2}
\right)}$
$\to \dfrac{4-2\sqrt{2}}{{{4}^{2}}-{{\left( 2\sqrt{2} \right)}^{2}}}$
$\to \dfrac{4-2\sqrt{2}}{16-8}$
$\to \dfrac{4-2\sqrt{2}}{8}$
$\to \dfrac{2-\sqrt{2}}{4}$
Hence, the solution for the equation is $\dfrac{2-\sqrt{2}}{4}$.
Note: Always check first by putting limits, if the limit evaluates to an indeterminate form, and
then, remember L-HOSPITAL RULE :
i.e., $\underset{x\to a}{\mathop{\lim }}\,\dfrac{f(x)}{g(x)}=\underset{x\to a}{\mathop{\lim
}}\,\dfrac{f'(x)}{g'(x)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f''(x)}{g''(x)}=.....$, till the limit
loses its indeterminate form.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE