
Evaluate the following:
\[{\text{tan 3}}{{\text{5}}^ \circ }{\text{ tan 4}}{{\text{0}}^ \circ }{\text{ tan 4}}{{\text{5}}^ \circ }{\text{ tan 5}}{{\text{0}}^ \circ }{\text{ tan 5}}{{\text{5}}^ \circ }\]
Answer
623.4k+ views
Hint: Use the conversion of tangent to cotangent.
To evaluate,
\[{\text{tan 3}}{{\text{5}}^ \circ }{\text{ tan 4}}{{\text{0}}^ \circ }{\text{ tan 4}}{{\text{5}}^ \circ }{\text{ tan 5}}{{\text{0}}^ \circ }{\text{ tan 5}}{{\text{5}}^ \circ }\]
We know that in trigonometry,
$\tan (90 - \theta ) = \cot \theta $
and $\cot \theta = \dfrac{1}{{\tan \theta }}$
So by using this identity we will get,
\[
tan{35^ \circ } = tan({90^ \circ } - {55^ \circ }) = cot{55^ \circ } \\
tan{40^ \circ } = tan({90^ \circ } - {50^ \circ }) = cot{50^ \circ } \\
\]
Now if we substitute these values in our original question we get,
\[
= cot{55^ \circ }cot{50^ \circ }tan{45^ \circ }tan{50^ \circ }tan{55^ \circ } \\
= \dfrac{1}{{tan{{55}^ \circ }}} \times \dfrac{1}{{tan{{50}^ \circ }}} \times tan{45^ \circ } \times tan{50^ \circ } \times tan{55^ \circ } \\
\]
On solving it we get,
$\tan {45^ \circ }$ = $1$
Hence, the answer is $1$
Note: In these types of problems, the conversion from one trigonometric quantity to another is crucial. Also, it's helpful to remember the trigonometric values.
To evaluate,
\[{\text{tan 3}}{{\text{5}}^ \circ }{\text{ tan 4}}{{\text{0}}^ \circ }{\text{ tan 4}}{{\text{5}}^ \circ }{\text{ tan 5}}{{\text{0}}^ \circ }{\text{ tan 5}}{{\text{5}}^ \circ }\]
We know that in trigonometry,
$\tan (90 - \theta ) = \cot \theta $
and $\cot \theta = \dfrac{1}{{\tan \theta }}$
So by using this identity we will get,
\[
tan{35^ \circ } = tan({90^ \circ } - {55^ \circ }) = cot{55^ \circ } \\
tan{40^ \circ } = tan({90^ \circ } - {50^ \circ }) = cot{50^ \circ } \\
\]
Now if we substitute these values in our original question we get,
\[
= cot{55^ \circ }cot{50^ \circ }tan{45^ \circ }tan{50^ \circ }tan{55^ \circ } \\
= \dfrac{1}{{tan{{55}^ \circ }}} \times \dfrac{1}{{tan{{50}^ \circ }}} \times tan{45^ \circ } \times tan{50^ \circ } \times tan{55^ \circ } \\
\]
On solving it we get,
$\tan {45^ \circ }$ = $1$
Hence, the answer is $1$
Note: In these types of problems, the conversion from one trigonometric quantity to another is crucial. Also, it's helpful to remember the trigonometric values.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

