
Evaluate the integral $\int\limits_{0}^{\pi }{\dfrac{x\sin x}{1+\sin x}dx}$.
Answer
619.8k+ views
Hint: Solve the integral by replacing x by $\left( \pi -x \right)$as per $\int\limits_{0}^{a}{f\left( x \right)dx=}\int\limits_{0}^{a}{f\left( a-x \right)dx}$. Then simplify it using trigonometric identities. Finally, after integration substitute $\left( \pi ,0 \right)$in the place of x.
Complete step-by-step solution -
Given the integral, $\int\limits_{0}^{\pi }{\dfrac{x\sin x}{1+\sin x}dx}$.
Let’s put, $I=\int\limits_{0}^{\pi }{\dfrac{x\sin x}{1+\sin x}dx}$.
We know that, $\int\limits_{0}^{a}{f\left( x \right)dx=}\int\limits_{0}^{a}{f\left( a-x \right)dx}$.
Thus, x becomes $\left( \pi -x \right)$.
$\therefore I=\int\limits_{0}^{\pi }{\dfrac{\left( \pi -x \right)\sin x}{1+\sin \left( \pi -x \right)}dx}$
We know, \[\sin \left( 180-\theta \right)=\sin \theta \]
\[\sin \left( \pi -x \right)=\sin x\]
\[\begin{align}
& I=\int\limits_{0}^{\pi }{\dfrac{\left( \pi -x \right)\sin x}{1+\sin x}}=\int\limits_{0}^{\pi }{\left( \dfrac{\pi \sin x-x\sin x}{1+\sin x} \right)dx} \\
& I=\int\limits_{0}^{\pi }{\left( \dfrac{\pi \sin x}{1+\sin x}-\dfrac{x\sin x}{1+\sin x} \right)dx} \\
\end{align}\]
\[I=\int\limits_{0}^{\pi }{\dfrac{\pi \sin x}{1+\sin x}dx}-\int\limits_{0}^{\pi }{\dfrac{x\sin x}{1+\sin x}dx}\]
\[I=\int\limits_{0}^{\pi }{\dfrac{\pi \sin x}{1+\sin x}dx}-I\]
\[\begin{align}
& \Rightarrow I+I=\int\limits_{0}^{\pi }{\dfrac{\pi \sin x}{1+\sin x}dx} \\
& 2I=\int\limits_{0}^{\pi }{\dfrac{\pi \sin x}{1+\sin x}dx} \\
& \therefore I=\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x}{1+\sin x}dx} \\
\end{align}\]
Multiply numerator and denominator with \[\left( 1-\sin x \right)\].
\[\begin{align}
& I=\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x\left( 1-\sin x \right)}{\left( 1+\sin x \right)\left( 1-\sin x \right)}dx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x\left( 1-\sin x \right)}{1-{{\sin }^{2}}x}dx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x-{{\sin }^{2}}x}{1-{{\sin }^{2}}x}dx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x}{{{\cos }^{2}}x}dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{{{\sin }^{2}}x}{{{\cos }^{2}}x}dx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\tan x}{\cos x}dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{{{\tan }^{2}}xdx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\tan x.\sec x.dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{{{\tan }^{2}}x.dx} \\
\end{align}\]
We know, \[\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\].
\[\begin{align}
& {{\sin }^{2}}x+{{\cos }^{2}}x=1 \\
& \therefore {{\cos }^{2}}x=1-{{\sin }^{2}}x \\
& \tan x=\dfrac{\sin x}{\cos x} \\
\end{align}\]
Which are basic, trigonometric formulae.
\[\because \dfrac{1}{\cos x}=\sec x\]
We know \[\int{\tan x.\sec x=\sec x}\]and \[\int{{{\sec }^{2}}x=\tan x}\].
Similarly, \[{{\tan }^{2}}x={{\sec }^{2}}x-1\].
\[\begin{align}
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\tan x.\sec x.dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\left( {{\sec }^{2}}-1 \right)dx} \\
& =\dfrac{\pi }{2}\left[ \sec x \right]_{0}^{\pi }-\dfrac{\pi }{2}\left[ \int\limits_{0}^{\pi }{{{\sec }^{2}}x}dx-\int\limits_{0}^{\pi }{1.dx} \right] \\
& =\dfrac{\pi }{2}\left[ \sec x \right]_{0}^{\pi }-\dfrac{\pi }{2}\left[ \left[ \tan x \right]_{0}^{\pi }-\left[ x \right]_{0}^{\pi } \right] \\
& =\dfrac{\pi }{2}\left[ \left[ \sec x \right]_{0}^{\pi }-\left[ \tan x \right]_{0}^{\pi }+\left[ x \right]_{0}^{\pi } \right] \\
& =\dfrac{\pi }{2}\left[ \left( \sec \pi -\sec 0 \right)-\left( \tan \pi -\tan 0 \right)+\left( \pi -0 \right) \right] \\
\end{align}\]
\[\sec \pi =-1\] \[\tan \pi =0\]
\[\sec 0=+1\] \[\tan 0=0\]
\[\begin{align}
& =\dfrac{\pi }{2}\left[ \left[ -1-1 \right]+\pi \right] \\
& =\dfrac{\pi }{2}\left[ -2+\pi \right] \\
& =\dfrac{\pi \left( \pi -2 \right)}{2} \\
& \therefore I=\dfrac{\pi \left( \pi -2 \right)}{2} \\
\end{align}\]
Hence, by evaluating the integral, we get \[\dfrac{\pi \left( \pi -2 \right)}{2}\].
Note:- Be careful while simplifying the integral. Open brackets, don’t mix up the sign. Remember the basic identities and trigonometric formulae. You should learn the integral values of \[\tan x.\sec x,{{\sec }^{2}}x\] etc, which we have used in solving the integral. Finally substitute \[\left( \pi ,0 \right)\]and simplify the expression.
Complete step-by-step solution -
Given the integral, $\int\limits_{0}^{\pi }{\dfrac{x\sin x}{1+\sin x}dx}$.
Let’s put, $I=\int\limits_{0}^{\pi }{\dfrac{x\sin x}{1+\sin x}dx}$.
We know that, $\int\limits_{0}^{a}{f\left( x \right)dx=}\int\limits_{0}^{a}{f\left( a-x \right)dx}$.
Thus, x becomes $\left( \pi -x \right)$.
$\therefore I=\int\limits_{0}^{\pi }{\dfrac{\left( \pi -x \right)\sin x}{1+\sin \left( \pi -x \right)}dx}$
We know, \[\sin \left( 180-\theta \right)=\sin \theta \]
\[\sin \left( \pi -x \right)=\sin x\]
\[\begin{align}
& I=\int\limits_{0}^{\pi }{\dfrac{\left( \pi -x \right)\sin x}{1+\sin x}}=\int\limits_{0}^{\pi }{\left( \dfrac{\pi \sin x-x\sin x}{1+\sin x} \right)dx} \\
& I=\int\limits_{0}^{\pi }{\left( \dfrac{\pi \sin x}{1+\sin x}-\dfrac{x\sin x}{1+\sin x} \right)dx} \\
\end{align}\]
\[I=\int\limits_{0}^{\pi }{\dfrac{\pi \sin x}{1+\sin x}dx}-\int\limits_{0}^{\pi }{\dfrac{x\sin x}{1+\sin x}dx}\]
\[I=\int\limits_{0}^{\pi }{\dfrac{\pi \sin x}{1+\sin x}dx}-I\]
\[\begin{align}
& \Rightarrow I+I=\int\limits_{0}^{\pi }{\dfrac{\pi \sin x}{1+\sin x}dx} \\
& 2I=\int\limits_{0}^{\pi }{\dfrac{\pi \sin x}{1+\sin x}dx} \\
& \therefore I=\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x}{1+\sin x}dx} \\
\end{align}\]
Multiply numerator and denominator with \[\left( 1-\sin x \right)\].
\[\begin{align}
& I=\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x\left( 1-\sin x \right)}{\left( 1+\sin x \right)\left( 1-\sin x \right)}dx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x\left( 1-\sin x \right)}{1-{{\sin }^{2}}x}dx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x-{{\sin }^{2}}x}{1-{{\sin }^{2}}x}dx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x}{{{\cos }^{2}}x}dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{{{\sin }^{2}}x}{{{\cos }^{2}}x}dx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\tan x}{\cos x}dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{{{\tan }^{2}}xdx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\tan x.\sec x.dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{{{\tan }^{2}}x.dx} \\
\end{align}\]
We know, \[\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\].
\[\begin{align}
& {{\sin }^{2}}x+{{\cos }^{2}}x=1 \\
& \therefore {{\cos }^{2}}x=1-{{\sin }^{2}}x \\
& \tan x=\dfrac{\sin x}{\cos x} \\
\end{align}\]
Which are basic, trigonometric formulae.
\[\because \dfrac{1}{\cos x}=\sec x\]
We know \[\int{\tan x.\sec x=\sec x}\]and \[\int{{{\sec }^{2}}x=\tan x}\].
Similarly, \[{{\tan }^{2}}x={{\sec }^{2}}x-1\].
\[\begin{align}
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\tan x.\sec x.dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\left( {{\sec }^{2}}-1 \right)dx} \\
& =\dfrac{\pi }{2}\left[ \sec x \right]_{0}^{\pi }-\dfrac{\pi }{2}\left[ \int\limits_{0}^{\pi }{{{\sec }^{2}}x}dx-\int\limits_{0}^{\pi }{1.dx} \right] \\
& =\dfrac{\pi }{2}\left[ \sec x \right]_{0}^{\pi }-\dfrac{\pi }{2}\left[ \left[ \tan x \right]_{0}^{\pi }-\left[ x \right]_{0}^{\pi } \right] \\
& =\dfrac{\pi }{2}\left[ \left[ \sec x \right]_{0}^{\pi }-\left[ \tan x \right]_{0}^{\pi }+\left[ x \right]_{0}^{\pi } \right] \\
& =\dfrac{\pi }{2}\left[ \left( \sec \pi -\sec 0 \right)-\left( \tan \pi -\tan 0 \right)+\left( \pi -0 \right) \right] \\
\end{align}\]
\[\sec \pi =-1\] \[\tan \pi =0\]
\[\sec 0=+1\] \[\tan 0=0\]
\[\begin{align}
& =\dfrac{\pi }{2}\left[ \left[ -1-1 \right]+\pi \right] \\
& =\dfrac{\pi }{2}\left[ -2+\pi \right] \\
& =\dfrac{\pi \left( \pi -2 \right)}{2} \\
& \therefore I=\dfrac{\pi \left( \pi -2 \right)}{2} \\
\end{align}\]
Hence, by evaluating the integral, we get \[\dfrac{\pi \left( \pi -2 \right)}{2}\].
Note:- Be careful while simplifying the integral. Open brackets, don’t mix up the sign. Remember the basic identities and trigonometric formulae. You should learn the integral values of \[\tan x.\sec x,{{\sec }^{2}}x\] etc, which we have used in solving the integral. Finally substitute \[\left( \pi ,0 \right)\]and simplify the expression.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

