Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Evaluate the integral 0πxsinx1+sinxdx.

Answer
VerifiedVerified
534k+ views
like imagedislike image
Hint: Solve the integral by replacing x by (πx)as per 0af(x)dx=0af(ax)dx. Then simplify it using trigonometric identities. Finally, after integration substitute (π,0)in the place of x.

Complete step-by-step solution -
Given the integral, 0πxsinx1+sinxdx.
Let’s put, I=0πxsinx1+sinxdx.
We know that, 0af(x)dx=0af(ax)dx.
Thus, x becomes (πx).
I=0π(πx)sinx1+sin(πx)dx
We know, sin(180θ)=sinθ
                   sin(πx)=sinx
I=0π(πx)sinx1+sinx=0π(πsinxxsinx1+sinx)dxI=0π(πsinx1+sinxxsinx1+sinx)dx
I=0ππsinx1+sinxdx0πxsinx1+sinxdx
I=0ππsinx1+sinxdxI
I+I=0ππsinx1+sinxdx2I=0ππsinx1+sinxdxI=π20πsinx1+sinxdx
Multiply numerator and denominator with (1sinx).
I=π20πsinx(1sinx)(1+sinx)(1sinx)dx=π20πsinx(1sinx)1sin2xdx=π20πsinxsin2x1sin2xdx=π20πsinxcos2xdxπ20πsin2xcos2xdx=π20πtanxcosxdxπ20πtan2xdx=π20πtanx.secx.dxπ20πtan2x.dx
We know, (ab)(a+b)=a2b2.
sin2x+cos2x=1cos2x=1sin2xtanx=sinxcosx
Which are basic, trigonometric formulae.
1cosx=secx
We know tanx.secx=secxand sec2x=tanx.
Similarly, tan2x=sec2x1.
=π20πtanx.secx.dxπ20π(sec21)dx=π2[secx]0ππ2[0πsec2xdx0π1.dx]=π2[secx]0ππ2[[tanx]0π[x]0π]=π2[[secx]0π[tanx]0π+[x]0π]=π2[(secπsec0)(tanπtan0)+(π0)]
secπ=1 tanπ=0
sec0=+1 tan0=0
=π2[[11]+π]=π2[2+π]=π(π2)2I=π(π2)2
Hence, by evaluating the integral, we get π(π2)2.
Note:- Be careful while simplifying the integral. Open brackets, don’t mix up the sign. Remember the basic identities and trigonometric formulae. You should learn the integral values of tanx.secx,sec2x etc, which we have used in solving the integral. Finally substitute (π,0)and simplify the expression.