
How do you evaluate the integral of $\int{(3-2x)dx}$ from -1 to 3?
Answer
555.9k+ views
Hint: To evaluate the integral of a polynomial, we need to consider the inverse of the power rule used in differentiation, i.e., $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+c$ . If the integral value of the function is within the given bounds, we subtract the value of the function at the lower bound from the function at the higher bound.
Complete Step by Step Solution:
Considering the lower and upper limits the question can be written as
$=\int\limits_{-1}^{3}{(3-2x)dx}$
Expanding the given integral, we get
$=\int\limits_{-1}^{3}{3dx-\int\limits_{-1}^{3}{2xdx}}$
Integrating the above integral,
$=\left. 3x-2\left( \dfrac{{{x}^{2}}}{2} \right) \right|_{-1}^{3}$
Simplifying,
$=\left. 3x-\left( {{x}^{2}} \right) \right|_{-1}^{3}$
Applying the bounds and substituting x values,
$=\left[ 3(3)-{{(3)}^{2}} \right]-\left[ 3(-1)-{{(-1)}^{2}} \right]=\left[ 9-9 \right]-\left[ -3-1 \right]$
Simplifying the above expression, we get
$=[0]-[-4]=4$
Therefore, $\int\limits_{-1}^{3}{(3-2x)dx}=4$
Note:
Alternate Method:
Taking the lower and upper limits into consideration the question can be written as
$=\int\limits_{-1}^{3}{(3-2x)dx}$
Using the formula, $\int\limits_{a}^{b}{f(x)dx}=\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{i=1}^{n}{f({{x}_{i}})\Delta x}$
In the above formula, for each positive integer n, we have $\Delta x=\dfrac{b-a}{n}$ and for $i=1,2,3,.......,n,$ we get ${{x}_{i}}=a+i\Delta x$ .
For every n, $\Delta x=\dfrac{b-a}{n}=\dfrac{3-(-1)}{n}=\dfrac{4}{n}$
For ${{x}_{i}}=a+i\Delta x$ we get the expression as ${{x}_{i}}=-1+i\dfrac{4}{n}=-1+\dfrac{4i}{n}$
Using this, we can write the expression of $f\left( {{x}_{i}} \right)$ as $f\left( {{x}_{i}} \right)=3-2{{x}_{i}}=3-2\left( -1+\dfrac{4i}{n} \right)=5-\dfrac{8i}{n}$
Using summation formulas for simplifying the above expression,
$\Rightarrow \sum\limits_{i=1}^{n}{f({{x}_{i}})\Delta x}=\sum\limits_{i=1}^{n}{\left( 5-\dfrac{8i}{n} \right)\dfrac{4}{n}}$
Multiplying each term in the bracket with $\dfrac{4}{n}$
$=\sum\limits_{i=1}^{n}{\left( \dfrac{20}{n}-\dfrac{32i}{{{n}^{2}}} \right)}$
$=\dfrac{20}{n}\sum\limits_{i=1}^{n}{\left( 1 \right)+\dfrac{32}{{{n}^{2}}}}\sum\limits_{i=1}^{n}{\left( i \right)}$
Simplifying the summation in each of the terms as $\sum\limits_{i=1}^{n}{\left( 1 \right)=n}$ and $\sum\limits_{i=1}^{n}{\left( i \right)}=\dfrac{n(n+1)}{2}$ we can simplify as $=\dfrac{20}{n}[n]-\dfrac{32}{{{n}^{2}}}\left[ \dfrac{n(n+1)}{2} \right]$
So, $\sum\limits_{i=1}^{n}{f({{x}_{i}})\Delta x}=20-\dfrac{32}{2}\left[ \dfrac{n(n+1)}{{{n}^{2}}} \right]$
To solve the expression, we need to evaluate the limit as $n\to \infty $ . This implies that we need to evaluate $\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{n(n+1)}{{{n}^{2}}} \right]$. The numerator of this expression will expand to a polynomial which has a leading term ${{n}^{2}}$, therefore, the limit as $n\to \infty $ is 1.
$\Rightarrow \dfrac{n(n+1)}{{{n}^{2}}}=\left( \dfrac{n}{n} \right)\left( \dfrac{n+1}{n} \right)=(1)\left( \dfrac{n}{n}+\dfrac{1}{n} \right)=1+\dfrac{1}{n}$
Simplifying and completing the integration, we get
$\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{i=1}^{n}{f({{x}_{i}})\Delta x}=20-\dfrac{32}{2}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{n(n+1)}{{{n}^{2}}} \right]$
Applying the limit and simplifying,
$\Rightarrow 20-16=4$
Therefore, $\int\limits_{-1}^{3}{(3-2x)dx}=4$
Complete Step by Step Solution:
Considering the lower and upper limits the question can be written as
$=\int\limits_{-1}^{3}{(3-2x)dx}$
Expanding the given integral, we get
$=\int\limits_{-1}^{3}{3dx-\int\limits_{-1}^{3}{2xdx}}$
Integrating the above integral,
$=\left. 3x-2\left( \dfrac{{{x}^{2}}}{2} \right) \right|_{-1}^{3}$
Simplifying,
$=\left. 3x-\left( {{x}^{2}} \right) \right|_{-1}^{3}$
Applying the bounds and substituting x values,
$=\left[ 3(3)-{{(3)}^{2}} \right]-\left[ 3(-1)-{{(-1)}^{2}} \right]=\left[ 9-9 \right]-\left[ -3-1 \right]$
Simplifying the above expression, we get
$=[0]-[-4]=4$
Therefore, $\int\limits_{-1}^{3}{(3-2x)dx}=4$
Note:
Alternate Method:
Taking the lower and upper limits into consideration the question can be written as
$=\int\limits_{-1}^{3}{(3-2x)dx}$
Using the formula, $\int\limits_{a}^{b}{f(x)dx}=\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{i=1}^{n}{f({{x}_{i}})\Delta x}$
In the above formula, for each positive integer n, we have $\Delta x=\dfrac{b-a}{n}$ and for $i=1,2,3,.......,n,$ we get ${{x}_{i}}=a+i\Delta x$ .
For every n, $\Delta x=\dfrac{b-a}{n}=\dfrac{3-(-1)}{n}=\dfrac{4}{n}$
For ${{x}_{i}}=a+i\Delta x$ we get the expression as ${{x}_{i}}=-1+i\dfrac{4}{n}=-1+\dfrac{4i}{n}$
Using this, we can write the expression of $f\left( {{x}_{i}} \right)$ as $f\left( {{x}_{i}} \right)=3-2{{x}_{i}}=3-2\left( -1+\dfrac{4i}{n} \right)=5-\dfrac{8i}{n}$
Using summation formulas for simplifying the above expression,
$\Rightarrow \sum\limits_{i=1}^{n}{f({{x}_{i}})\Delta x}=\sum\limits_{i=1}^{n}{\left( 5-\dfrac{8i}{n} \right)\dfrac{4}{n}}$
Multiplying each term in the bracket with $\dfrac{4}{n}$
$=\sum\limits_{i=1}^{n}{\left( \dfrac{20}{n}-\dfrac{32i}{{{n}^{2}}} \right)}$
$=\dfrac{20}{n}\sum\limits_{i=1}^{n}{\left( 1 \right)+\dfrac{32}{{{n}^{2}}}}\sum\limits_{i=1}^{n}{\left( i \right)}$
Simplifying the summation in each of the terms as $\sum\limits_{i=1}^{n}{\left( 1 \right)=n}$ and $\sum\limits_{i=1}^{n}{\left( i \right)}=\dfrac{n(n+1)}{2}$ we can simplify as $=\dfrac{20}{n}[n]-\dfrac{32}{{{n}^{2}}}\left[ \dfrac{n(n+1)}{2} \right]$
So, $\sum\limits_{i=1}^{n}{f({{x}_{i}})\Delta x}=20-\dfrac{32}{2}\left[ \dfrac{n(n+1)}{{{n}^{2}}} \right]$
To solve the expression, we need to evaluate the limit as $n\to \infty $ . This implies that we need to evaluate $\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{n(n+1)}{{{n}^{2}}} \right]$. The numerator of this expression will expand to a polynomial which has a leading term ${{n}^{2}}$, therefore, the limit as $n\to \infty $ is 1.
$\Rightarrow \dfrac{n(n+1)}{{{n}^{2}}}=\left( \dfrac{n}{n} \right)\left( \dfrac{n+1}{n} \right)=(1)\left( \dfrac{n}{n}+\dfrac{1}{n} \right)=1+\dfrac{1}{n}$
Simplifying and completing the integration, we get
$\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{i=1}^{n}{f({{x}_{i}})\Delta x}=20-\dfrac{32}{2}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{n(n+1)}{{{n}^{2}}} \right]$
Applying the limit and simplifying,
$\Rightarrow 20-16=4$
Therefore, $\int\limits_{-1}^{3}{(3-2x)dx}=4$
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

