
How do you evaluate the integral of $\int{(3-2x)dx}$ from -1 to 3?
Answer
542.4k+ views
Hint: To evaluate the integral of a polynomial, we need to consider the inverse of the power rule used in differentiation, i.e., $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+c$ . If the integral value of the function is within the given bounds, we subtract the value of the function at the lower bound from the function at the higher bound.
Complete Step by Step Solution:
Considering the lower and upper limits the question can be written as
$=\int\limits_{-1}^{3}{(3-2x)dx}$
Expanding the given integral, we get
$=\int\limits_{-1}^{3}{3dx-\int\limits_{-1}^{3}{2xdx}}$
Integrating the above integral,
$=\left. 3x-2\left( \dfrac{{{x}^{2}}}{2} \right) \right|_{-1}^{3}$
Simplifying,
$=\left. 3x-\left( {{x}^{2}} \right) \right|_{-1}^{3}$
Applying the bounds and substituting x values,
$=\left[ 3(3)-{{(3)}^{2}} \right]-\left[ 3(-1)-{{(-1)}^{2}} \right]=\left[ 9-9 \right]-\left[ -3-1 \right]$
Simplifying the above expression, we get
$=[0]-[-4]=4$
Therefore, $\int\limits_{-1}^{3}{(3-2x)dx}=4$
Note:
Alternate Method:
Taking the lower and upper limits into consideration the question can be written as
$=\int\limits_{-1}^{3}{(3-2x)dx}$
Using the formula, $\int\limits_{a}^{b}{f(x)dx}=\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{i=1}^{n}{f({{x}_{i}})\Delta x}$
In the above formula, for each positive integer n, we have $\Delta x=\dfrac{b-a}{n}$ and for $i=1,2,3,.......,n,$ we get ${{x}_{i}}=a+i\Delta x$ .
For every n, $\Delta x=\dfrac{b-a}{n}=\dfrac{3-(-1)}{n}=\dfrac{4}{n}$
For ${{x}_{i}}=a+i\Delta x$ we get the expression as ${{x}_{i}}=-1+i\dfrac{4}{n}=-1+\dfrac{4i}{n}$
Using this, we can write the expression of $f\left( {{x}_{i}} \right)$ as $f\left( {{x}_{i}} \right)=3-2{{x}_{i}}=3-2\left( -1+\dfrac{4i}{n} \right)=5-\dfrac{8i}{n}$
Using summation formulas for simplifying the above expression,
$\Rightarrow \sum\limits_{i=1}^{n}{f({{x}_{i}})\Delta x}=\sum\limits_{i=1}^{n}{\left( 5-\dfrac{8i}{n} \right)\dfrac{4}{n}}$
Multiplying each term in the bracket with $\dfrac{4}{n}$
$=\sum\limits_{i=1}^{n}{\left( \dfrac{20}{n}-\dfrac{32i}{{{n}^{2}}} \right)}$
$=\dfrac{20}{n}\sum\limits_{i=1}^{n}{\left( 1 \right)+\dfrac{32}{{{n}^{2}}}}\sum\limits_{i=1}^{n}{\left( i \right)}$
Simplifying the summation in each of the terms as $\sum\limits_{i=1}^{n}{\left( 1 \right)=n}$ and $\sum\limits_{i=1}^{n}{\left( i \right)}=\dfrac{n(n+1)}{2}$ we can simplify as $=\dfrac{20}{n}[n]-\dfrac{32}{{{n}^{2}}}\left[ \dfrac{n(n+1)}{2} \right]$
So, $\sum\limits_{i=1}^{n}{f({{x}_{i}})\Delta x}=20-\dfrac{32}{2}\left[ \dfrac{n(n+1)}{{{n}^{2}}} \right]$
To solve the expression, we need to evaluate the limit as $n\to \infty $ . This implies that we need to evaluate $\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{n(n+1)}{{{n}^{2}}} \right]$. The numerator of this expression will expand to a polynomial which has a leading term ${{n}^{2}}$, therefore, the limit as $n\to \infty $ is 1.
$\Rightarrow \dfrac{n(n+1)}{{{n}^{2}}}=\left( \dfrac{n}{n} \right)\left( \dfrac{n+1}{n} \right)=(1)\left( \dfrac{n}{n}+\dfrac{1}{n} \right)=1+\dfrac{1}{n}$
Simplifying and completing the integration, we get
$\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{i=1}^{n}{f({{x}_{i}})\Delta x}=20-\dfrac{32}{2}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{n(n+1)}{{{n}^{2}}} \right]$
Applying the limit and simplifying,
$\Rightarrow 20-16=4$
Therefore, $\int\limits_{-1}^{3}{(3-2x)dx}=4$
Complete Step by Step Solution:
Considering the lower and upper limits the question can be written as
$=\int\limits_{-1}^{3}{(3-2x)dx}$
Expanding the given integral, we get
$=\int\limits_{-1}^{3}{3dx-\int\limits_{-1}^{3}{2xdx}}$
Integrating the above integral,
$=\left. 3x-2\left( \dfrac{{{x}^{2}}}{2} \right) \right|_{-1}^{3}$
Simplifying,
$=\left. 3x-\left( {{x}^{2}} \right) \right|_{-1}^{3}$
Applying the bounds and substituting x values,
$=\left[ 3(3)-{{(3)}^{2}} \right]-\left[ 3(-1)-{{(-1)}^{2}} \right]=\left[ 9-9 \right]-\left[ -3-1 \right]$
Simplifying the above expression, we get
$=[0]-[-4]=4$
Therefore, $\int\limits_{-1}^{3}{(3-2x)dx}=4$
Note:
Alternate Method:
Taking the lower and upper limits into consideration the question can be written as
$=\int\limits_{-1}^{3}{(3-2x)dx}$
Using the formula, $\int\limits_{a}^{b}{f(x)dx}=\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{i=1}^{n}{f({{x}_{i}})\Delta x}$
In the above formula, for each positive integer n, we have $\Delta x=\dfrac{b-a}{n}$ and for $i=1,2,3,.......,n,$ we get ${{x}_{i}}=a+i\Delta x$ .
For every n, $\Delta x=\dfrac{b-a}{n}=\dfrac{3-(-1)}{n}=\dfrac{4}{n}$
For ${{x}_{i}}=a+i\Delta x$ we get the expression as ${{x}_{i}}=-1+i\dfrac{4}{n}=-1+\dfrac{4i}{n}$
Using this, we can write the expression of $f\left( {{x}_{i}} \right)$ as $f\left( {{x}_{i}} \right)=3-2{{x}_{i}}=3-2\left( -1+\dfrac{4i}{n} \right)=5-\dfrac{8i}{n}$
Using summation formulas for simplifying the above expression,
$\Rightarrow \sum\limits_{i=1}^{n}{f({{x}_{i}})\Delta x}=\sum\limits_{i=1}^{n}{\left( 5-\dfrac{8i}{n} \right)\dfrac{4}{n}}$
Multiplying each term in the bracket with $\dfrac{4}{n}$
$=\sum\limits_{i=1}^{n}{\left( \dfrac{20}{n}-\dfrac{32i}{{{n}^{2}}} \right)}$
$=\dfrac{20}{n}\sum\limits_{i=1}^{n}{\left( 1 \right)+\dfrac{32}{{{n}^{2}}}}\sum\limits_{i=1}^{n}{\left( i \right)}$
Simplifying the summation in each of the terms as $\sum\limits_{i=1}^{n}{\left( 1 \right)=n}$ and $\sum\limits_{i=1}^{n}{\left( i \right)}=\dfrac{n(n+1)}{2}$ we can simplify as $=\dfrac{20}{n}[n]-\dfrac{32}{{{n}^{2}}}\left[ \dfrac{n(n+1)}{2} \right]$
So, $\sum\limits_{i=1}^{n}{f({{x}_{i}})\Delta x}=20-\dfrac{32}{2}\left[ \dfrac{n(n+1)}{{{n}^{2}}} \right]$
To solve the expression, we need to evaluate the limit as $n\to \infty $ . This implies that we need to evaluate $\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{n(n+1)}{{{n}^{2}}} \right]$. The numerator of this expression will expand to a polynomial which has a leading term ${{n}^{2}}$, therefore, the limit as $n\to \infty $ is 1.
$\Rightarrow \dfrac{n(n+1)}{{{n}^{2}}}=\left( \dfrac{n}{n} \right)\left( \dfrac{n+1}{n} \right)=(1)\left( \dfrac{n}{n}+\dfrac{1}{n} \right)=1+\dfrac{1}{n}$
Simplifying and completing the integration, we get
$\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{i=1}^{n}{f({{x}_{i}})\Delta x}=20-\dfrac{32}{2}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{n(n+1)}{{{n}^{2}}} \right]$
Applying the limit and simplifying,
$\Rightarrow 20-16=4$
Therefore, $\int\limits_{-1}^{3}{(3-2x)dx}=4$
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

