
Evaluate the Integration, \[\int{{{\sec }^{2}}\theta {{\left( \sec \theta +\tan \theta \right)}^{2}}d\theta }\] .
Answer
574.2k+ views
Hint: Assume that \[t=\left( \sec \theta +\tan \theta \right)\] . Differentiate \[t\] with respect to \[d\theta \] and get the relation between \[dt\] and \[d\theta \] . We know the identity, \[\left( {{\sec }^{2}}\theta -{{\tan }^{2}}\theta \right)=1\] . Now, get the value of \[\left( \sec \theta -\tan \theta \right)\] in terms of \[t\] by expanding the identity \[\left( {{\sec }^{2}}\theta -{{\tan }^{2}}\theta \right)=1\] using the formula, \[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\] . Now, arrange the given expression as \[\int{\sec \theta \left( \sec \theta +\tan \theta \right)\sec \theta \left( \sec \theta +\tan \theta \right)d\theta }\] and then modify it in terms of \[t\] . Solve it further by using the formula, \[\int{{{t}^{a}}dt=\dfrac{{{t}^{a+1}}}{a+1}}\] .
Complete step by step solution:
According to the question, we have to integrate, \[\int{{{\sec }^{2}}\theta {{\left( \sec \theta +\tan \theta \right)}^{2}}d\theta }\] ……………………………………..(1)
We have to simplify the above equation into a simpler form.
First of all, let us assume that \[t=\left( \sec \theta +\tan \theta \right)\] ………………………………..(2)
Now, on differentiating the LHS and RHS with respect to \[d\theta \] of equation (2), we get
\[\dfrac{dt}{d\theta }=\dfrac{d}{d\theta }\left( \sec \theta +\tan \theta \right)\] ……………………………….(3)
We know the formula, \[\dfrac{d\left( \sec \theta \right)}{d\theta }=\sec \theta \tan \theta \] and \[\dfrac{d\left( \tan \theta \right)}{d\theta }={{\sec }^{2}}\theta \] …………………………………..(4)
Now, using the formula shown in equation (4) and on simplifying equation (4), we get
\[\begin{align}
& \Rightarrow \dfrac{dt}{d\theta }=\left( \sec \theta \tan \theta +{{\sec }^{2}}\theta \right) \\
& \Rightarrow \dfrac{dt}{d\theta }=\sec \theta \left( \sec \theta +\tan \theta \right) \\
\end{align}\]
\[\Rightarrow dt=\sec \theta \left( \sec \theta +\tan \theta \right)d\theta \] ………………………………………….(5)
We know the identity, \[\left( {{\sec }^{2}}\theta -{{\tan }^{2}}\theta \right)=1\]
We also know the formula, \[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\] .
Now, from the above identity and formula, we get
\[\Rightarrow \left( \sec \theta +\tan \theta \right)\left( \sec \theta -\tan \theta \right)=1\] ………………………………………..(6)
Using equation (2) and on substituting \[\left( \sec \theta +\tan \theta \right)\] by t in equation (6), we get
\[\Rightarrow t\left( \sec \theta -\tan \theta \right)=1\]
\[\Rightarrow \left( \sec \theta -\tan \theta \right)=\dfrac{1}{t}\] ………………………………………….(7)
Now, on adding equation (2) and equation (7), we get
\[\begin{align}
& \Rightarrow \left( \sec \theta +\tan \theta \right)+\left( \sec \theta -\tan \theta \right)=t+\dfrac{1}{t} \\
& \Rightarrow 2\sec \theta =\left( t+\dfrac{1}{t} \right) \\
\end{align}\]
\[\Rightarrow \sec \theta =\dfrac{1}{2}\left( t+\dfrac{1}{t} \right)\]…………………………………………(8)
Now, arranging equation (1), we get
\[=\int{\sec \theta \left( \sec \theta +\tan \theta \right)\sec \theta \left( \sec \theta +\tan \theta \right)d\theta }\] ……………………………………………………(9)
Using equation (2), equation (5), equation (8), and on substituting \[\sec \theta \] by \[\dfrac{1}{2}\left( t+\dfrac{1}{t} \right)\], \[\left( \sec \theta +\tan \theta \right)\] by \[t\] , and \[\sec \theta \left( \sec \theta +\tan \theta \right)d\theta \] by \[dt\] , we get
\[\begin{align}
& =\int{\dfrac{1}{2}\left( t+\dfrac{1}{t} \right)tdt} \\
& =\dfrac{1}{2}\int{\left( {{t}^{2}}+\dfrac{1}{t}\times t \right)dt} \\
& =\dfrac{1}{2}\int{\left( {{t}^{2}}+1 \right)dt} \\
\end{align}\]
\[=\dfrac{1}{2}\left( \int{{{t}^{2}}dt+\int{dt}} \right)\] …………………………………..(10)
We also know the formula, \[\int{{{t}^{a}}dt=\dfrac{{{t}^{a+1}}}{a+1}}\] ………………………………………(11)
Using equation (11) and simplifying equation (10), we get
\[=\dfrac{1}{2}\left( \dfrac{{{t}^{3}}}{3}+t \right)+c\] ……………………………………………………..(12)
From equation (2), we have \[t=\left( \sec \theta +\tan \theta \right)\] .
Now, on substituting \[t\] by \[\left( \sec \theta +\tan \theta \right)\] in equation (12), we get
\[=\dfrac{1}{2}\left\{ \dfrac{{{\left( \sec \theta +\tan \theta \right)}^{3}}}{3}+\left( \sec \theta +\tan \theta \right) \right\}+c\] ………………………………………………….(13)
Therefore, \[\int{{{\sec }^{2}}\theta {{\left( \sec \theta +\tan \theta \right)}^{2}}d\theta }=\dfrac{1}{2}\left\{ \dfrac{{{\left( \sec \theta +\tan \theta \right)}^{3}}}{3}+\left( \sec \theta +\tan \theta \right) \right\}+c\] .
Note: For this question, one might think to expand the expression and then simplify it. This approach will not work here because on expanding we get more terms which will make the solution more complex to be simplified further.
Complete step by step solution:
According to the question, we have to integrate, \[\int{{{\sec }^{2}}\theta {{\left( \sec \theta +\tan \theta \right)}^{2}}d\theta }\] ……………………………………..(1)
We have to simplify the above equation into a simpler form.
First of all, let us assume that \[t=\left( \sec \theta +\tan \theta \right)\] ………………………………..(2)
Now, on differentiating the LHS and RHS with respect to \[d\theta \] of equation (2), we get
\[\dfrac{dt}{d\theta }=\dfrac{d}{d\theta }\left( \sec \theta +\tan \theta \right)\] ……………………………….(3)
We know the formula, \[\dfrac{d\left( \sec \theta \right)}{d\theta }=\sec \theta \tan \theta \] and \[\dfrac{d\left( \tan \theta \right)}{d\theta }={{\sec }^{2}}\theta \] …………………………………..(4)
Now, using the formula shown in equation (4) and on simplifying equation (4), we get
\[\begin{align}
& \Rightarrow \dfrac{dt}{d\theta }=\left( \sec \theta \tan \theta +{{\sec }^{2}}\theta \right) \\
& \Rightarrow \dfrac{dt}{d\theta }=\sec \theta \left( \sec \theta +\tan \theta \right) \\
\end{align}\]
\[\Rightarrow dt=\sec \theta \left( \sec \theta +\tan \theta \right)d\theta \] ………………………………………….(5)
We know the identity, \[\left( {{\sec }^{2}}\theta -{{\tan }^{2}}\theta \right)=1\]
We also know the formula, \[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\] .
Now, from the above identity and formula, we get
\[\Rightarrow \left( \sec \theta +\tan \theta \right)\left( \sec \theta -\tan \theta \right)=1\] ………………………………………..(6)
Using equation (2) and on substituting \[\left( \sec \theta +\tan \theta \right)\] by t in equation (6), we get
\[\Rightarrow t\left( \sec \theta -\tan \theta \right)=1\]
\[\Rightarrow \left( \sec \theta -\tan \theta \right)=\dfrac{1}{t}\] ………………………………………….(7)
Now, on adding equation (2) and equation (7), we get
\[\begin{align}
& \Rightarrow \left( \sec \theta +\tan \theta \right)+\left( \sec \theta -\tan \theta \right)=t+\dfrac{1}{t} \\
& \Rightarrow 2\sec \theta =\left( t+\dfrac{1}{t} \right) \\
\end{align}\]
\[\Rightarrow \sec \theta =\dfrac{1}{2}\left( t+\dfrac{1}{t} \right)\]…………………………………………(8)
Now, arranging equation (1), we get
\[=\int{\sec \theta \left( \sec \theta +\tan \theta \right)\sec \theta \left( \sec \theta +\tan \theta \right)d\theta }\] ……………………………………………………(9)
Using equation (2), equation (5), equation (8), and on substituting \[\sec \theta \] by \[\dfrac{1}{2}\left( t+\dfrac{1}{t} \right)\], \[\left( \sec \theta +\tan \theta \right)\] by \[t\] , and \[\sec \theta \left( \sec \theta +\tan \theta \right)d\theta \] by \[dt\] , we get
\[\begin{align}
& =\int{\dfrac{1}{2}\left( t+\dfrac{1}{t} \right)tdt} \\
& =\dfrac{1}{2}\int{\left( {{t}^{2}}+\dfrac{1}{t}\times t \right)dt} \\
& =\dfrac{1}{2}\int{\left( {{t}^{2}}+1 \right)dt} \\
\end{align}\]
\[=\dfrac{1}{2}\left( \int{{{t}^{2}}dt+\int{dt}} \right)\] …………………………………..(10)
We also know the formula, \[\int{{{t}^{a}}dt=\dfrac{{{t}^{a+1}}}{a+1}}\] ………………………………………(11)
Using equation (11) and simplifying equation (10), we get
\[=\dfrac{1}{2}\left( \dfrac{{{t}^{3}}}{3}+t \right)+c\] ……………………………………………………..(12)
From equation (2), we have \[t=\left( \sec \theta +\tan \theta \right)\] .
Now, on substituting \[t\] by \[\left( \sec \theta +\tan \theta \right)\] in equation (12), we get
\[=\dfrac{1}{2}\left\{ \dfrac{{{\left( \sec \theta +\tan \theta \right)}^{3}}}{3}+\left( \sec \theta +\tan \theta \right) \right\}+c\] ………………………………………………….(13)
Therefore, \[\int{{{\sec }^{2}}\theta {{\left( \sec \theta +\tan \theta \right)}^{2}}d\theta }=\dfrac{1}{2}\left\{ \dfrac{{{\left( \sec \theta +\tan \theta \right)}^{3}}}{3}+\left( \sec \theta +\tan \theta \right) \right\}+c\] .
Note: For this question, one might think to expand the expression and then simplify it. This approach will not work here because on expanding we get more terms which will make the solution more complex to be simplified further.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

Calculate the equivalent resistance between a and b class 12 physics CBSE

How many states of matter are there in total class 12 chemistry CBSE

Which of the following is the best conductor of electricity class 12 physics CBSE

