Answer
Verified
429.6k+ views
Hint: In this question we have been asked to calculate the value of three different trigonometric ratios for the same given angle. From the basic concept we know that these trigonometric ratios are related as $\cos \theta =\sqrt{1-{{\sin }^{2}}\theta }$ and $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ . We will simplify and calculate the values using these values.
Complete answer:
Now considering from the question we have been asked to calculate the value of three different trigonometric ratios the sine, cosine, and tangent of the angle $53$ degrees.
From the basic concepts we know that these trigonometric ratios are related as $\cos \theta =\sqrt{1-{{\sin }^{2}}\theta }$ and $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$.
We know that from the concept the expansion of sine angle is given as$\sin x=\sum\limits_{n=0}^{\infty }{\dfrac{{{\left( -1 \right)}^{n}}}{\left( 2n+1 \right)!}{{x}^{2n+1}}=x-\dfrac{{{x}^{3}}}{3!}+\dfrac{{{x}^{5}}}{5!}.........\forall x}$.
As we have been asked for the angle ${{53}^{\circ }}$ we will convert it into the radians and then substitute it in the above expansion.
From the basics of trigonometry we know that ${{1}^{\circ }}$ is equal to $\dfrac{\pi }{{{180}^{\circ }}}$ radians. So we can say that ${{53}^{\circ }}$ will be equal to $0.925$ radians.
By substituting $x=0.9$ we will get an approximate value of the sine ratio.
Now we will have $\sin {{53}^{\circ }}=\sum\limits_{n=0}^{\infty }{\dfrac{{{\left( -1 \right)}^{n}}}{\left( 2n+1 \right)!}{{\left( 0.9 \right)}^{2n+1}}=\left( 0.9 \right)-\dfrac{{{\left( 0.9 \right)}^{3}}}{3!}+\dfrac{{{\left( 0.9 \right)}^{5}}}{5!}.........}$ .
By calculating its value we will have $\sin {{53}^{\circ }}=0.7986$ .
The cosine ratio will be given by $\cos \theta =\sqrt{1-{{\sin }^{2}}\theta }$. After substituting the value of theta we will have
$\begin{align}
& \cos {{53}^{\circ }}=\sqrt{1-{{\left( 0.7 \right)}^{2}}} \\
& \Rightarrow \cos {{53}^{\circ }}=\sqrt{1-0.49} \\
& \Rightarrow \cos {{53}^{\circ }}=0.6018 \\
\end{align}$
Now we need to analyse the value of tangent ratio for ${{53}^{\circ }}$ angle. We will use the relation $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ .
By substituting the respective values we will have
$\begin{align}
& \tan {{53}^{\circ }}=\dfrac{\sin {{53}^{\circ }}}{\cos {{53}^{\circ }}} \\
& \Rightarrow \tan {{53}^{\circ }}=\dfrac{0.7986}{0.6018} \\
& \Rightarrow \tan {{53}^{\circ }}=1.3270 \\
\end{align}$
These all are approximate values.
Note:
While answering we should be sure with our calculations and the transformations and basic arithmetic simplifications we make. Similar to the sine expansion we have expansions for all the trigonometric expansions like for cosine we have $\cos x=\sum\limits_{n=0}^{\infty }{\dfrac{{{\left( -1 \right)}^{n}}}{\left( 2n \right)!}{{x}^{2n}}=1-\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{4}}}{4!}-........\forall x}$ we can also use this expansion while solving the above question.
Complete answer:
Now considering from the question we have been asked to calculate the value of three different trigonometric ratios the sine, cosine, and tangent of the angle $53$ degrees.
From the basic concepts we know that these trigonometric ratios are related as $\cos \theta =\sqrt{1-{{\sin }^{2}}\theta }$ and $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$.
We know that from the concept the expansion of sine angle is given as$\sin x=\sum\limits_{n=0}^{\infty }{\dfrac{{{\left( -1 \right)}^{n}}}{\left( 2n+1 \right)!}{{x}^{2n+1}}=x-\dfrac{{{x}^{3}}}{3!}+\dfrac{{{x}^{5}}}{5!}.........\forall x}$.
As we have been asked for the angle ${{53}^{\circ }}$ we will convert it into the radians and then substitute it in the above expansion.
From the basics of trigonometry we know that ${{1}^{\circ }}$ is equal to $\dfrac{\pi }{{{180}^{\circ }}}$ radians. So we can say that ${{53}^{\circ }}$ will be equal to $0.925$ radians.
By substituting $x=0.9$ we will get an approximate value of the sine ratio.
Now we will have $\sin {{53}^{\circ }}=\sum\limits_{n=0}^{\infty }{\dfrac{{{\left( -1 \right)}^{n}}}{\left( 2n+1 \right)!}{{\left( 0.9 \right)}^{2n+1}}=\left( 0.9 \right)-\dfrac{{{\left( 0.9 \right)}^{3}}}{3!}+\dfrac{{{\left( 0.9 \right)}^{5}}}{5!}.........}$ .
By calculating its value we will have $\sin {{53}^{\circ }}=0.7986$ .
The cosine ratio will be given by $\cos \theta =\sqrt{1-{{\sin }^{2}}\theta }$. After substituting the value of theta we will have
$\begin{align}
& \cos {{53}^{\circ }}=\sqrt{1-{{\left( 0.7 \right)}^{2}}} \\
& \Rightarrow \cos {{53}^{\circ }}=\sqrt{1-0.49} \\
& \Rightarrow \cos {{53}^{\circ }}=0.6018 \\
\end{align}$
Now we need to analyse the value of tangent ratio for ${{53}^{\circ }}$ angle. We will use the relation $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ .
By substituting the respective values we will have
$\begin{align}
& \tan {{53}^{\circ }}=\dfrac{\sin {{53}^{\circ }}}{\cos {{53}^{\circ }}} \\
& \Rightarrow \tan {{53}^{\circ }}=\dfrac{0.7986}{0.6018} \\
& \Rightarrow \tan {{53}^{\circ }}=1.3270 \\
\end{align}$
These all are approximate values.
Note:
While answering we should be sure with our calculations and the transformations and basic arithmetic simplifications we make. Similar to the sine expansion we have expansions for all the trigonometric expansions like for cosine we have $\cos x=\sum\limits_{n=0}^{\infty }{\dfrac{{{\left( -1 \right)}^{n}}}{\left( 2n \right)!}{{x}^{2n}}=1-\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{4}}}{4!}-........\forall x}$ we can also use this expansion while solving the above question.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers