Evaluate the value of $\sqrt{\dfrac{1+\sin \theta }{1-\sin \theta }}$ ?
Answer
Verified
443.7k+ views
Hint: These types of problems are of the form $\sqrt{fraction}$ . So, the general solution of these types of problems is by rationalising the denominator by multiplying same expressions to the numerator and the denominator. Here too, we multiply $\sqrt{1+\sin \theta }$ to the numerator and the denominator. After that, we apply some basic trigonometric formulae and arrive at our desired simplified form.
Complete step by step answer:
The given expression is
$\sqrt{\dfrac{1+\sin \theta }{1-\sin \theta }}$
We start off the solution by multiplying $\sqrt{1+\sin \theta }$ in the numerator and denominator both. The expression thus becomes,
$\Rightarrow \sqrt{\dfrac{1+\sin \theta }{1-\sin \theta }}\times \sqrt{\dfrac{1+\sin \theta }{1+\sin \theta }}$
The denominator becomes $\sqrt{{{\left( 1-\sin \theta \right)}^{2}}}$ and the numerator becomes $\sqrt{\left( 1+\sin \theta \right)\left( 1-\sin \theta \right)}$ . The expression thus becomes,
$\Rightarrow \dfrac{\sqrt{{{\left( 1+\sin \theta \right)}^{2}}}}{\sqrt{\left( 1-\sin \theta \right)\left( 1+\sin \theta \right)}}$
Which can be further simplified to
$\Rightarrow \dfrac{\left( 1+\sin \theta \right)}{\sqrt{\left( 1-\sin \theta \right)\left( 1+\sin \theta \right)}}$
Now, we know the formula of squares which states that $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$ . If we compare the denominator of the above expression with the formula of squares, we can say that $a=1$ and $b=\sin \theta $ . So, applying the formula in the above expression, the expression thus becomes,
$\Rightarrow \dfrac{\left( 1+\sin \theta \right)}{\sqrt{\left( 1-{{\sin }^{2}}\theta \right)}}$
We know that ${{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta $ . Applying this formula in the above expression, we get,
$\Rightarrow \dfrac{\left( 1+\sin \theta \right)}{\sqrt{\left( {{\cos }^{2}}\theta \right)}}$
This can be further simplified to
$\Rightarrow \dfrac{\left( 1+\sin \theta \right)}{\cos \theta }$
We now split the above expression into two fractions. The expression thus becomes,
$\Rightarrow \dfrac{1}{\cos \theta }+\dfrac{\sin \theta }{\cos \theta }$
We all know that the reciprocal trigonometric ratio $\sec \theta $ is equal to $\dfrac{1}{\cos \theta }$ . The above expression thus can be rewritten as,.
$\Rightarrow \sec \theta +\dfrac{\sin \theta }{\cos \theta }$
Also, we know that $\tan \theta $ is nothing but $\dfrac{\sin \theta }{\cos \theta }$ . Thus, rewriting the above expression after applying this formula, we get,
$\Rightarrow \sec \theta +\tan \theta $
Therefore, we can conclude that the simplified form of the value of the given expression $\sqrt{\dfrac{1+\sin \theta }{1-\sin \theta }}$ is $\sec \theta +\tan \theta $ .
Note: While solving these types of problems, we should choose an appropriate term to rationalise the denominator. Also, we must be careful while simplifying the fractions, as students often miss out some terms and this leads to mistakes. We should express the given expression in the most simplified form possible.
Complete step by step answer:
The given expression is
$\sqrt{\dfrac{1+\sin \theta }{1-\sin \theta }}$
We start off the solution by multiplying $\sqrt{1+\sin \theta }$ in the numerator and denominator both. The expression thus becomes,
$\Rightarrow \sqrt{\dfrac{1+\sin \theta }{1-\sin \theta }}\times \sqrt{\dfrac{1+\sin \theta }{1+\sin \theta }}$
The denominator becomes $\sqrt{{{\left( 1-\sin \theta \right)}^{2}}}$ and the numerator becomes $\sqrt{\left( 1+\sin \theta \right)\left( 1-\sin \theta \right)}$ . The expression thus becomes,
$\Rightarrow \dfrac{\sqrt{{{\left( 1+\sin \theta \right)}^{2}}}}{\sqrt{\left( 1-\sin \theta \right)\left( 1+\sin \theta \right)}}$
Which can be further simplified to
$\Rightarrow \dfrac{\left( 1+\sin \theta \right)}{\sqrt{\left( 1-\sin \theta \right)\left( 1+\sin \theta \right)}}$
Now, we know the formula of squares which states that $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$ . If we compare the denominator of the above expression with the formula of squares, we can say that $a=1$ and $b=\sin \theta $ . So, applying the formula in the above expression, the expression thus becomes,
$\Rightarrow \dfrac{\left( 1+\sin \theta \right)}{\sqrt{\left( 1-{{\sin }^{2}}\theta \right)}}$
We know that ${{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta $ . Applying this formula in the above expression, we get,
$\Rightarrow \dfrac{\left( 1+\sin \theta \right)}{\sqrt{\left( {{\cos }^{2}}\theta \right)}}$
This can be further simplified to
$\Rightarrow \dfrac{\left( 1+\sin \theta \right)}{\cos \theta }$
We now split the above expression into two fractions. The expression thus becomes,
$\Rightarrow \dfrac{1}{\cos \theta }+\dfrac{\sin \theta }{\cos \theta }$
We all know that the reciprocal trigonometric ratio $\sec \theta $ is equal to $\dfrac{1}{\cos \theta }$ . The above expression thus can be rewritten as,.
$\Rightarrow \sec \theta +\dfrac{\sin \theta }{\cos \theta }$
Also, we know that $\tan \theta $ is nothing but $\dfrac{\sin \theta }{\cos \theta }$ . Thus, rewriting the above expression after applying this formula, we get,
$\Rightarrow \sec \theta +\tan \theta $
Therefore, we can conclude that the simplified form of the value of the given expression $\sqrt{\dfrac{1+\sin \theta }{1-\sin \theta }}$ is $\sec \theta +\tan \theta $ .
Note: While solving these types of problems, we should choose an appropriate term to rationalise the denominator. Also, we must be careful while simplifying the fractions, as students often miss out some terms and this leads to mistakes. We should express the given expression in the most simplified form possible.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE