Answer
Verified
498k+ views
Hint: Use trigonometric identity given as $\cos 2\theta =2{{\cos }^{2}}\theta -1$. Please note that $\cos 2\theta $ and $\cos \theta $are constants.
Here, we have integration given;
$\int{\dfrac{\cos 2x-\cos 2\theta }{\cos x-\cos \theta }}dx$……………………(1)
As, we can notice that ‘x’ is acting as a variable and $\theta $ is a constant as integration is given with respect to dx.
We can use trigonometric identity $\cos 2\theta =2{{\cos }^{2}}\theta -1$ to simplify the integration given in equation (1).
Hence, replacing $\cos 2x\ \text{by }2{{\cos }^{2}}x-1\ \text{and }\cos 2\theta \text{ by }2{{\cos }^{2}}\theta -1$ by using the above mentioned trigonometric identity.
Hence, equation (1) or given integration can be written as;
\[\begin{align}
& \int{\dfrac{\left( 2{{\cos }^{2}}x-1 \right)-\left( 2{{\cos }^{2}}\theta -1 \right)}{\cos x-\cos \theta }}dx \\
& \int{\dfrac{2{{\cos }^{2}}x-1-2{{\cos }^{2}}\theta +1}{\cos x-\cos \theta }}dx \\
& \int{\dfrac{2\left( {{\cos }^{2}}x-{{\cos }^{2}}\theta \right)}{\cos x-\cos \theta }}dx..................\left( 2 \right) \\
\end{align}\]
Now, we have an algebraic identity given as;
${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$ ………………….(3)
Now, we can use the above algebraic identity as mentioned in equation (3) with equation (2). We can replace \[{{\cos }^{2}}x-{{\cos }^{2}}\theta \text{ by }\left( \cos x-\cos \theta \right)\left( \cos x+\cos \theta \right)\].
Hence, equation (2) can be written as;
\[\int{\dfrac{2\left( \cos x-\cos \theta \right)\left( \cos x+\cos \theta \right)}{\left( \cos x-\cos \theta \right)}}dx\]
Now, cancelling same times from numerator and denominator, we get;
\[2\int{\left( \cos x-\cos \theta \right)dx}\] …………………….(4)
Now, we know that;
$\int{\left( f\left( x \right)+g\left( x \right) \right)dx=\int{f\left( x \right)dx+\int{g\left( x \right)dx}}}$
Hence, we can write equation (4), as
\[2\int{\cos xdx}+2\int{\cos \theta dx}\]
We know integration of cos x is sin x and $\cos \theta $ is acting as a constant with respect to ‘x’. Hence, we can take it out of integration in the above equation, we get;
$\begin{align}
& 2\sin x+2\cos \theta \int{1dx} \\
& or \\
& 2\sin x+2\cos \theta \int{{{x}^{0}}dx} \\
\end{align}$
As we know $\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}}$, Hence $\int{{{x}^{0}}dx=\dfrac{{{x}^{0+1}}}{0+1}}=x$
Therefore, above equation can be written as;
$\begin{align}
& 2\sin x+2\cos \theta \left( x \right)+C \\
& or \\
& 2\left( \sin x+x\cos \theta \right)+C \\
& Hence, \\
& \int{\dfrac{\cos 2x-\cos 2\theta }{\cos x-\cos \theta }}=2\left( \sin x+x\cos \theta \right)+C \\
\end{align}$
So, option (A) is the correct answer.
Note: One can apply the trigonometric identity of $\cos 2\theta \text{ as }1-2{{\cos }^{2}}\theta $ which will give the wrong solution. Hence, use $\cos 2\theta =2{{\cos }^{2}}\theta -1$ .
Another approach for this question would be that we can multiply by $\cos x+\cos \theta $ in numerator and denominator, we get;
\[\int{\dfrac{\left( \cos 2x-\cos 2\theta \right)\left( \cos x+\cos \theta \right)}{\left( \cos x-\cos \theta \right)\left( \cos x+\cos \theta \right)}}dx\]
Using relation $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$, and solve accordingly.
Here, we have integration given;
$\int{\dfrac{\cos 2x-\cos 2\theta }{\cos x-\cos \theta }}dx$……………………(1)
As, we can notice that ‘x’ is acting as a variable and $\theta $ is a constant as integration is given with respect to dx.
We can use trigonometric identity $\cos 2\theta =2{{\cos }^{2}}\theta -1$ to simplify the integration given in equation (1).
Hence, replacing $\cos 2x\ \text{by }2{{\cos }^{2}}x-1\ \text{and }\cos 2\theta \text{ by }2{{\cos }^{2}}\theta -1$ by using the above mentioned trigonometric identity.
Hence, equation (1) or given integration can be written as;
\[\begin{align}
& \int{\dfrac{\left( 2{{\cos }^{2}}x-1 \right)-\left( 2{{\cos }^{2}}\theta -1 \right)}{\cos x-\cos \theta }}dx \\
& \int{\dfrac{2{{\cos }^{2}}x-1-2{{\cos }^{2}}\theta +1}{\cos x-\cos \theta }}dx \\
& \int{\dfrac{2\left( {{\cos }^{2}}x-{{\cos }^{2}}\theta \right)}{\cos x-\cos \theta }}dx..................\left( 2 \right) \\
\end{align}\]
Now, we have an algebraic identity given as;
${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$ ………………….(3)
Now, we can use the above algebraic identity as mentioned in equation (3) with equation (2). We can replace \[{{\cos }^{2}}x-{{\cos }^{2}}\theta \text{ by }\left( \cos x-\cos \theta \right)\left( \cos x+\cos \theta \right)\].
Hence, equation (2) can be written as;
\[\int{\dfrac{2\left( \cos x-\cos \theta \right)\left( \cos x+\cos \theta \right)}{\left( \cos x-\cos \theta \right)}}dx\]
Now, cancelling same times from numerator and denominator, we get;
\[2\int{\left( \cos x-\cos \theta \right)dx}\] …………………….(4)
Now, we know that;
$\int{\left( f\left( x \right)+g\left( x \right) \right)dx=\int{f\left( x \right)dx+\int{g\left( x \right)dx}}}$
Hence, we can write equation (4), as
\[2\int{\cos xdx}+2\int{\cos \theta dx}\]
We know integration of cos x is sin x and $\cos \theta $ is acting as a constant with respect to ‘x’. Hence, we can take it out of integration in the above equation, we get;
$\begin{align}
& 2\sin x+2\cos \theta \int{1dx} \\
& or \\
& 2\sin x+2\cos \theta \int{{{x}^{0}}dx} \\
\end{align}$
As we know $\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}}$, Hence $\int{{{x}^{0}}dx=\dfrac{{{x}^{0+1}}}{0+1}}=x$
Therefore, above equation can be written as;
$\begin{align}
& 2\sin x+2\cos \theta \left( x \right)+C \\
& or \\
& 2\left( \sin x+x\cos \theta \right)+C \\
& Hence, \\
& \int{\dfrac{\cos 2x-\cos 2\theta }{\cos x-\cos \theta }}=2\left( \sin x+x\cos \theta \right)+C \\
\end{align}$
So, option (A) is the correct answer.
Note: One can apply the trigonometric identity of $\cos 2\theta \text{ as }1-2{{\cos }^{2}}\theta $ which will give the wrong solution. Hence, use $\cos 2\theta =2{{\cos }^{2}}\theta -1$ .
Another approach for this question would be that we can multiply by $\cos x+\cos \theta $ in numerator and denominator, we get;
\[\int{\dfrac{\left( \cos 2x-\cos 2\theta \right)\left( \cos x+\cos \theta \right)}{\left( \cos x-\cos \theta \right)\left( \cos x+\cos \theta \right)}}dx\]
Using relation $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$, and solve accordingly.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE