Answer
Verified
442.2k+ views
Hint: In this question, we have defined the given function for different values.
We need to find out the continuity of the function at the given point for finding that we first need to evaluate the left and right hand limit of the function at that point then if these two values are the same, we can conclude that the function is continuous at that point.
Formula used: A function $f$ is said to be continuous at a point $x = a$ if,
\[\mathop {\lim }\limits_{x \to a - } f\left( x \right) = \mathop {\lim }\limits_{x \to a + } f\left( x \right) = f\left( a \right)\]
Complete step-by-step solution:
It is given that the function $f$ is defined as,
\[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{ = \dfrac{{{e^{5x}} - {e^{2x}}}}{{\sin 3x}}}&{{\text{for }}x \ne 0} \\
{ = 1}&{{\text{for }}x = 0}
\end{array}} \right.\]
We need to examine the continuity of the following function at a given point \[x = 0\].
(The left hand limit of the function $f$ at \[x = 0\]) \[ = \] (The right hand limit of the function $f$ at \[x = 0\]= The value of the function at \[x = 0\])
\[\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^{5x}} - {e^{2x}}}}{{\sin 3x}}\]
Substitute the limit,
\[\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^{5 \times 0}} - {e^{2 \times 0}}}}{{\sin \left( {3 \times 0} \right)}}\]
Simplifying the terms,
\[\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{e^0} - {e^0}}}{{\sin 0}}\]
This is in \[\dfrac{0}{0}\] form thus we can apply L'Hospital's rule, we get,
\[\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^{5x}} - {e^{2x}}}}{{\sin 3x}}\]
Simplifying we get,
\[ \Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{5{e^{5x}} - 2{e^{2x}}}}{{3\cos 3x}}\]
Hence,
\[ \Rightarrow \dfrac{{5 - 2}}{3}\]
Subtracting the terms,
\[ \Rightarrow \dfrac{3}{3}\]
Thus,
\[ \Rightarrow 1\]
Then \[\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^{5x}} - {e^{2x}}}}{{\sin 3x}} = f\left( 0 \right) = 1\]
$\therefore $ The function $f$ is continuous at the point \[x = 0\].
Note: We have to know that,
Continuous function:
In mathematics, a continuous function is a function that does not have any abrupt changes in value, known as discontinuities. More precisely, sufficiently small changes in the input of a continuous function result in arbitrarily small changes in its output. If not continuous, a function is said to be discontinuous.
L'Hospital's rule:
It says that the limit when we divide one function by another is the same after we take the derivative of each function.
\[\mathop {\lim }\limits_{x \to c} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {\lim }\limits_{x \to c} \dfrac{{f'\left( x \right)}}{{g'\left( x \right)}}\]
The limit as x approaches c of "\[f\left( x \right)\]over\[g\left( x \right)\]" equals the limit as x approaches c of "\[f'\left( x \right)\] over\[g'\left( x \right)\]".
We need to find out the continuity of the function at the given point for finding that we first need to evaluate the left and right hand limit of the function at that point then if these two values are the same, we can conclude that the function is continuous at that point.
Formula used: A function $f$ is said to be continuous at a point $x = a$ if,
\[\mathop {\lim }\limits_{x \to a - } f\left( x \right) = \mathop {\lim }\limits_{x \to a + } f\left( x \right) = f\left( a \right)\]
Complete step-by-step solution:
It is given that the function $f$ is defined as,
\[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{ = \dfrac{{{e^{5x}} - {e^{2x}}}}{{\sin 3x}}}&{{\text{for }}x \ne 0} \\
{ = 1}&{{\text{for }}x = 0}
\end{array}} \right.\]
We need to examine the continuity of the following function at a given point \[x = 0\].
(The left hand limit of the function $f$ at \[x = 0\]) \[ = \] (The right hand limit of the function $f$ at \[x = 0\]= The value of the function at \[x = 0\])
\[\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^{5x}} - {e^{2x}}}}{{\sin 3x}}\]
Substitute the limit,
\[\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^{5 \times 0}} - {e^{2 \times 0}}}}{{\sin \left( {3 \times 0} \right)}}\]
Simplifying the terms,
\[\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{e^0} - {e^0}}}{{\sin 0}}\]
This is in \[\dfrac{0}{0}\] form thus we can apply L'Hospital's rule, we get,
\[\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^{5x}} - {e^{2x}}}}{{\sin 3x}}\]
Simplifying we get,
\[ \Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{5{e^{5x}} - 2{e^{2x}}}}{{3\cos 3x}}\]
Hence,
\[ \Rightarrow \dfrac{{5 - 2}}{3}\]
Subtracting the terms,
\[ \Rightarrow \dfrac{3}{3}\]
Thus,
\[ \Rightarrow 1\]
Then \[\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^{5x}} - {e^{2x}}}}{{\sin 3x}} = f\left( 0 \right) = 1\]
$\therefore $ The function $f$ is continuous at the point \[x = 0\].
Note: We have to know that,
Continuous function:
In mathematics, a continuous function is a function that does not have any abrupt changes in value, known as discontinuities. More precisely, sufficiently small changes in the input of a continuous function result in arbitrarily small changes in its output. If not continuous, a function is said to be discontinuous.
L'Hospital's rule:
It says that the limit when we divide one function by another is the same after we take the derivative of each function.
\[\mathop {\lim }\limits_{x \to c} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {\lim }\limits_{x \to c} \dfrac{{f'\left( x \right)}}{{g'\left( x \right)}}\]
The limit as x approaches c of "\[f\left( x \right)\]over\[g\left( x \right)\]" equals the limit as x approaches c of "\[f'\left( x \right)\] over\[g'\left( x \right)\]".
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE