
Expand: \[\left| \begin{matrix}
1 & -7 & 3 \\
5 & -6 & 0 \\
1 & 2 & -3 \\
\end{matrix} \right|\]
Answer
622.5k+ views
Hint: To find the value of a given matrix, use the formula for expansion of value of the matrix and substitute the values to get the value of expansion.
We have the matrix\[\left| \begin{matrix}
1 & -7 & 3 \\
5 & -6 & 0 \\
1 & 2 & -3 \\
\end{matrix} \right|\]. We observe that this is a \[3\times 3\]matrix.
Matrix is a rectangular array of numbers, symbols or expressions, arranged in rows and columns. Provided that two matrices have the same size (each matrix has the same number of rows and same number of columns as the other), two matrices can be added or subtracted element by element. The rule for matrix multiplication is that two matrices can be multiplied only when the number of columns in the first matrix equals the number of rows in the second one. Also, matrix multiplication is not commutative.
Any matrix is represented as \[A={{\left[ {{a}_{ij}} \right]}_{m\times n}}\] which has \[m\] rows and \[n\] columns.
We know that the formula for expansion of the matrix \[\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|\]is\[a\left( ei-hf \right)-b\left( di-fg \right)+c\left( dh-ge \right)\].
Substituting the value \[a=1,b=-7,c=3,d=5,e=-6,f=0,g=1,h=2,i=-3\], we have \[\left| \begin{matrix}
1 & -7 & 3 \\
5 & -6 & 0 \\
1 & 2 & -3 \\
\end{matrix} \right|=1\left[ \left( -6 \right)\left( -3 \right)-\left( 0 \right)\left( 2 \right) \right]-\left( -7 \right)\left[ \left( 5 \right)\left( -3 \right)-\left( 0 \right)\left( 1 \right) \right]+3\left[ \left( 5 \right)\left( 2 \right)-\left( 1 \right)\left( -6 \right) \right]\].
Simplifying the above equation, we have\[\left| \begin{matrix}
1 & -7 & 3 \\
5 & -6 & 0 \\
1 & 2 & -3 \\
\end{matrix} \right|=1\left( 18-0 \right)+7\left( -15-0 \right)+3\left( 10+6 \right)=18-105+48=-39\].
Thus, we have the value of the given matrix as\[-39\].
This method of matrix expansion of matrix is called cofactor expansion. It is an expression for the weighted sum of the determinants of the sub matrices of the given matrix. For a matrix of the form \[A={{\left[ {{a}_{ij}} \right]}_{n\times n}}\], we define \[{{C}_{ij}}={{\left( -1 \right)}^{i+j}}{{M}_{ij}}\] as the cofactor of matrix \[A\] where \[{{M}_{ij}}\] is the \[i,j\] minor of \[A\] .
We define the determinant of \[A\] as \[\left| A \right|={{a}_{i1}}{{C}_{i1}}+{{a}_{i2}}{{C}_{i2}}+...+{{a}_{in}}{{C}_{in}}={{a}_{1i}}{{C}_{1i}}+{{a}_{2i}}{{C}_{2i}}+...{{a}_{ni}}{{C}_{ni}}\]. Thus, we observe that we can expand a matrix in multiple ways along its various rows and columns.
Note: We must keep in mind that we can expand any matrix along various rows and columns. But we will get the same value of the matrix by expanding along any row or column.
We have the matrix\[\left| \begin{matrix}
1 & -7 & 3 \\
5 & -6 & 0 \\
1 & 2 & -3 \\
\end{matrix} \right|\]. We observe that this is a \[3\times 3\]matrix.
Matrix is a rectangular array of numbers, symbols or expressions, arranged in rows and columns. Provided that two matrices have the same size (each matrix has the same number of rows and same number of columns as the other), two matrices can be added or subtracted element by element. The rule for matrix multiplication is that two matrices can be multiplied only when the number of columns in the first matrix equals the number of rows in the second one. Also, matrix multiplication is not commutative.
Any matrix is represented as \[A={{\left[ {{a}_{ij}} \right]}_{m\times n}}\] which has \[m\] rows and \[n\] columns.
We know that the formula for expansion of the matrix \[\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|\]is\[a\left( ei-hf \right)-b\left( di-fg \right)+c\left( dh-ge \right)\].
Substituting the value \[a=1,b=-7,c=3,d=5,e=-6,f=0,g=1,h=2,i=-3\], we have \[\left| \begin{matrix}
1 & -7 & 3 \\
5 & -6 & 0 \\
1 & 2 & -3 \\
\end{matrix} \right|=1\left[ \left( -6 \right)\left( -3 \right)-\left( 0 \right)\left( 2 \right) \right]-\left( -7 \right)\left[ \left( 5 \right)\left( -3 \right)-\left( 0 \right)\left( 1 \right) \right]+3\left[ \left( 5 \right)\left( 2 \right)-\left( 1 \right)\left( -6 \right) \right]\].
Simplifying the above equation, we have\[\left| \begin{matrix}
1 & -7 & 3 \\
5 & -6 & 0 \\
1 & 2 & -3 \\
\end{matrix} \right|=1\left( 18-0 \right)+7\left( -15-0 \right)+3\left( 10+6 \right)=18-105+48=-39\].
Thus, we have the value of the given matrix as\[-39\].
This method of matrix expansion of matrix is called cofactor expansion. It is an expression for the weighted sum of the determinants of the sub matrices of the given matrix. For a matrix of the form \[A={{\left[ {{a}_{ij}} \right]}_{n\times n}}\], we define \[{{C}_{ij}}={{\left( -1 \right)}^{i+j}}{{M}_{ij}}\] as the cofactor of matrix \[A\] where \[{{M}_{ij}}\] is the \[i,j\] minor of \[A\] .
We define the determinant of \[A\] as \[\left| A \right|={{a}_{i1}}{{C}_{i1}}+{{a}_{i2}}{{C}_{i2}}+...+{{a}_{in}}{{C}_{in}}={{a}_{1i}}{{C}_{1i}}+{{a}_{2i}}{{C}_{2i}}+...{{a}_{ni}}{{C}_{ni}}\]. Thus, we observe that we can expand a matrix in multiple ways along its various rows and columns.
Note: We must keep in mind that we can expand any matrix along various rows and columns. But we will get the same value of the matrix by expanding along any row or column.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

