Answer
Verified
474.3k+ views
Hint: Lens used in a simple microscope is a convex lens, it forms a virtual, erect and magnified image at distance of distinct vision. In this way you can imagine a diagram by knowing the idea of a convex lens. Magnifying power is defined as ratio of angle subtended at eye by the image and angle subtended at unaided eye by the object at distance of distinct vision. Put the values in magnifying power formula and get magnifying power formula for image at DDV and image at infinity.
Complete step by step answer:
The magnifying power of a simple microscope is defined as the ratio of the angle subtended at eye by the image to the angle subtended at unaided eye by the object kept at distance of distinct image (DDV).
$\begin{align}
& \text{M}\text{.P}\text{. =}\dfrac{\text{angle subtended at eye by the image}}{\text{Angle subtended at unaided eye by the object at DDV}} \\
& \text{M}\text{.P}\text{. =}\dfrac{\beta }{\alpha }----(1) \\
\end{align}$
Where $\beta $ is the angle subtended at the eye by the image\[A'B'\]and$\alpha $is the angle subtended at the eye by the object kept at DDV.
\[\begin{align}
& \text{Consider }\vartriangle \text{A }\!\!'\!\!\text{ B }\!\!'\!\!\text{ O,} \\
& \text{tan}\beta \text{=}\dfrac{A'B'}{OB'}=\dfrac{AB}{u} \\
& \text{since}\beta \text{ is very small-tan}\beta \approx \text{ }\beta \text{=}\dfrac{AB}{u} \\
\end{align}\]
\[\begin{align}
& \text{tan}\alpha \text{=}\dfrac{AB}{D} \\
& \text{since}\alpha \text{ is very small-tan}\alpha \approx \alpha \text{=}\dfrac{AB}{D} \\
\end{align}\]
Put value in equation (1), we get
$M.P.=\dfrac{\dfrac{AB}{u}}{\dfrac{AB}{D}}=\dfrac{D}{u}$
From lens formula we have: $\dfrac{1}{v}-\dfrac{1}{u}=\dfrac{1}{f}$
According to sign convention. Here $u\text{ and }v$ are negative and $f$is positive,
Therefore we get-
$\begin{align}
& \dfrac{1}{u}=\dfrac{1}{v}+\dfrac{1}{f} \\
& \dfrac{D}{u}=\dfrac{D}{v}+\dfrac{D}{f} \\
& M.P.=\dfrac{D}{v}+\dfrac{D}{f} \\
\end{align}$
This equation gives the magnifying power of a simple microscope.
Case (i): If the image is formed at distance of distinct vision i.e. DDV i.e\[v=D\], then
$M.P.=\dfrac{D}{D}+\dfrac{D}{f}=\left( 1+\dfrac{D}{f} \right)$
Hence magnifying power is $\left( 1+\dfrac{D}{f} \right)$, if the image formed at distance of distinct vision.
Case (ii): If the image is formed at infinity i.e. $v=\infty ;$then
$M.P.=\dfrac{D}{\infty }+\dfrac{D}{f}=\left( \dfrac{D}{f} \right)$
Hence magnifying power is $\dfrac{D}{f}$, if the image formed at infinity.
Note:
From above two cases, we can say that magnifying power of simple microscope can be anything from$\left( \dfrac{D}{f} \right)to\left( 1+\dfrac{D}{f} \right)$.
Thus the magnifying power of a simple microscope is inversely proportional to focal length and it is maximum when the image is at a distance of distinct vision.
Complete step by step answer:
The magnifying power of a simple microscope is defined as the ratio of the angle subtended at eye by the image to the angle subtended at unaided eye by the object kept at distance of distinct image (DDV).
$\begin{align}
& \text{M}\text{.P}\text{. =}\dfrac{\text{angle subtended at eye by the image}}{\text{Angle subtended at unaided eye by the object at DDV}} \\
& \text{M}\text{.P}\text{. =}\dfrac{\beta }{\alpha }----(1) \\
\end{align}$
Where $\beta $ is the angle subtended at the eye by the image\[A'B'\]and$\alpha $is the angle subtended at the eye by the object kept at DDV.
\[\begin{align}
& \text{Consider }\vartriangle \text{A }\!\!'\!\!\text{ B }\!\!'\!\!\text{ O,} \\
& \text{tan}\beta \text{=}\dfrac{A'B'}{OB'}=\dfrac{AB}{u} \\
& \text{since}\beta \text{ is very small-tan}\beta \approx \text{ }\beta \text{=}\dfrac{AB}{u} \\
\end{align}\]
\[\begin{align}
& \text{tan}\alpha \text{=}\dfrac{AB}{D} \\
& \text{since}\alpha \text{ is very small-tan}\alpha \approx \alpha \text{=}\dfrac{AB}{D} \\
\end{align}\]
Put value in equation (1), we get
$M.P.=\dfrac{\dfrac{AB}{u}}{\dfrac{AB}{D}}=\dfrac{D}{u}$
From lens formula we have: $\dfrac{1}{v}-\dfrac{1}{u}=\dfrac{1}{f}$
According to sign convention. Here $u\text{ and }v$ are negative and $f$is positive,
Therefore we get-
$\begin{align}
& \dfrac{1}{u}=\dfrac{1}{v}+\dfrac{1}{f} \\
& \dfrac{D}{u}=\dfrac{D}{v}+\dfrac{D}{f} \\
& M.P.=\dfrac{D}{v}+\dfrac{D}{f} \\
\end{align}$
This equation gives the magnifying power of a simple microscope.
Case (i): If the image is formed at distance of distinct vision i.e. DDV i.e\[v=D\], then
$M.P.=\dfrac{D}{D}+\dfrac{D}{f}=\left( 1+\dfrac{D}{f} \right)$
Hence magnifying power is $\left( 1+\dfrac{D}{f} \right)$, if the image formed at distance of distinct vision.
Case (ii): If the image is formed at infinity i.e. $v=\infty ;$then
$M.P.=\dfrac{D}{\infty }+\dfrac{D}{f}=\left( \dfrac{D}{f} \right)$
Hence magnifying power is $\dfrac{D}{f}$, if the image formed at infinity.
Note:
From above two cases, we can say that magnifying power of simple microscope can be anything from$\left( \dfrac{D}{f} \right)to\left( 1+\dfrac{D}{f} \right)$.
Thus the magnifying power of a simple microscope is inversely proportional to focal length and it is maximum when the image is at a distance of distinct vision.
Recently Updated Pages
A very dilute acidic solution of Cd2+ and Ni2+ gives class 12 chem sec 1 JEE_Main
Calculate the equivalent resistance between A and class 12 physics JEE_Main
The potential difference between points A and B in class 12 physics JEE_Main
A wire is bent in the form of a triangle now the equivalent class 12 physics NEET_UG
For the circuit shown in figure the equivalent capacitance class 12 physics JEE_Main
If on applying the potential of 20 V on a conductor class 12 physics JEE_Main
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE
Distinguish between asexual and sexual reproduction class 12 biology CBSE