
Explain what happens when Aluminium reacts with dilute Hydrochloric acid.
Answer
427.5k+ views
Hint: The reaction between Aluminium and dilute HCl results in a gaseous and an aqueous product. Now that you have this information, try and figure out what each of these products could be.
Step-by-Step Solution:
Let us look at the properties of Aluminium and its various chemical properties to help figure out the answer to this question.
Aluminium is a malleable, light, silvery-white metal. It is a good electrical conductor and is also amphoteric in nature– it can react with both acids and bases. Combining aluminium with an acid results in a typical single displacement reaction, forming aluminium salt and gaseous hydrogen.
Aluminium reacts with dilute hydrochloric acid at room temperature. The metal dissolves in hydrochloric acid, yielding aluminium chloride and colourless hydrogen gas. This reaction is irreversible, as the final products will not react with each other. The reaction between metallic aluminium and hydrochloric acid is what is known as an oxidation-reduction reaction.
Let us now go through how this reaction would proceed step-by-step.
Aluminium acts as the reducing agent, giving up electrons:
\[A{{l}^{0}}\text{ }-\text{ }3e\text{ }=~A{{l}^{3+}}\]
Cations of hydrochloric acid take these electrons and are reduced to molecular hydrogen:
\[2{{H}^{+}}\text{ }+\text{ }2e\text{ }=~H\uparrow \]
The complete ionic reaction equation reads:
\[2A{{l}^{0}}\text{ }+\text{ }6{{H}^{+}}\text{ }+\text{ }6C{{l}^{-}}\text{ }=\text{ }2A{{l}^{3+}}\text{ }+\text{ }6C{{l}^{-}}\text{ }+~3H\uparrow \]
Net-ionic form:
\[2A{{l}^{0}}\text{ }+\text{ }6{{H}^{+}}\text{ }=\text{ }2A{{l}^{3+}}\text{ }+~3{{H}_{2}}\uparrow \]
In molecular form, the reaction looks as follows:
\[2Al\text{ }+\text{ }6HCl\text{ }\to \text{ }2AlC{{l}_{3}}\text{ }+~3{{H}_{2}}\uparrow \]
Note: Keep in mind that this reaction will not take place as soon as you add the piece of aluminium to the hydrochloric acid solution.
That happens because the piece of aluminium is protected by a layer of aluminium oxide, \[A{{l}_{2}}{{O}_{3}}\], the same layer that protects aluminium from reacting with water.
The hydrochloric acid will take some time to eat through this protective layer, but once that happens, the reaction will proceed quite vigorously, i.e. hydrogen gas will start to bubble out of solution.
Step-by-Step Solution:
Let us look at the properties of Aluminium and its various chemical properties to help figure out the answer to this question.
Aluminium is a malleable, light, silvery-white metal. It is a good electrical conductor and is also amphoteric in nature– it can react with both acids and bases. Combining aluminium with an acid results in a typical single displacement reaction, forming aluminium salt and gaseous hydrogen.
Aluminium reacts with dilute hydrochloric acid at room temperature. The metal dissolves in hydrochloric acid, yielding aluminium chloride and colourless hydrogen gas. This reaction is irreversible, as the final products will not react with each other. The reaction between metallic aluminium and hydrochloric acid is what is known as an oxidation-reduction reaction.
Let us now go through how this reaction would proceed step-by-step.
Aluminium acts as the reducing agent, giving up electrons:
\[A{{l}^{0}}\text{ }-\text{ }3e\text{ }=~A{{l}^{3+}}\]
Cations of hydrochloric acid take these electrons and are reduced to molecular hydrogen:
\[2{{H}^{+}}\text{ }+\text{ }2e\text{ }=~H\uparrow \]
The complete ionic reaction equation reads:
\[2A{{l}^{0}}\text{ }+\text{ }6{{H}^{+}}\text{ }+\text{ }6C{{l}^{-}}\text{ }=\text{ }2A{{l}^{3+}}\text{ }+\text{ }6C{{l}^{-}}\text{ }+~3H\uparrow \]
Net-ionic form:
\[2A{{l}^{0}}\text{ }+\text{ }6{{H}^{+}}\text{ }=\text{ }2A{{l}^{3+}}\text{ }+~3{{H}_{2}}\uparrow \]
In molecular form, the reaction looks as follows:
\[2Al\text{ }+\text{ }6HCl\text{ }\to \text{ }2AlC{{l}_{3}}\text{ }+~3{{H}_{2}}\uparrow \]
Note: Keep in mind that this reaction will not take place as soon as you add the piece of aluminium to the hydrochloric acid solution.
That happens because the piece of aluminium is protected by a layer of aluminium oxide, \[A{{l}_{2}}{{O}_{3}}\], the same layer that protects aluminium from reacting with water.
The hydrochloric acid will take some time to eat through this protective layer, but once that happens, the reaction will proceed quite vigorously, i.e. hydrogen gas will start to bubble out of solution.
Recently Updated Pages
Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
A number is chosen from 1 to 20 Find the probabili-class-10-maths-CBSE

Find the area of the minor segment of a circle of radius class 10 maths CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

A gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE
