
Explain why $ 15 \times 7 + 7 $ is a composite number.
Answer
578.4k+ views
Hint: A composite number is a positive integer that can be formed by multiplying two smaller positive integers. That integers has at least one divisor other than $ 1 $ and itself.
Complete step by step solution::
The given number is: $ 15 \times 7 + 7 $
There are two terms in the given number and $ 7 $is a common factor.
We take $ 7 $as common, then we have
$ 15 \times 7 + 7 = 7\left( {15 \times 1 + 1} \right) $
$ 15 \times 7 + 7 = 7\left( {15 + 1} \right) $
$ 15 \times 7 + 7 = 7\left( {16} \right) $
$ 15 \times 7 + 7 = 112 $
When we factorize\[112\], we will get
$ 112 = 2 \times 2 \times 2 \times 2 \times 7 $
$ 112 = {2^4} \times 7 $
This number is divisible by $ 2,4,7,8 $and $ 16 $, which means that it has more than two factors.
Therefore, $ 15 \times 7 + 7 $ is a composite number
Additional information: the divisibility rule is given below:
(i) Divisibility rule of $ 2 $: Which states that for a number to be divisible by $ 2 $, the unit digit must have \[0,2,4,6\]or \[8\] in units place.
(ii) Divisibility rule of $ 4 $: Which states that for a number to be divisible by $ 4 $, the unit and tens digit should be divisible by $ 4 $
(iii) Divisibility rule of $ 7 $: We need to double the last digit of the number and then subtract it from the remaining number. If the result is divisible by $ 7 $, then the original number will also be divisible by $ 7 $.
Note: Different types of numbers are:
(i) Natural number: \[1,2,3,4,\]------
(ii) Whole number:\[\;0,1,2,3,4,\] ------
(iii) Integers: \[ - 4, - 3, - 2, - 1,0,1,2,3,4,\]-----
(iv) Positive integers: \[1,2,3,\]-----
(v) Negative integers: \[ - 4, - 3, - 2, - 1\]
Complete step by step solution::
The given number is: $ 15 \times 7 + 7 $
There are two terms in the given number and $ 7 $is a common factor.
We take $ 7 $as common, then we have
$ 15 \times 7 + 7 = 7\left( {15 \times 1 + 1} \right) $
$ 15 \times 7 + 7 = 7\left( {15 + 1} \right) $
$ 15 \times 7 + 7 = 7\left( {16} \right) $
$ 15 \times 7 + 7 = 112 $
When we factorize\[112\], we will get
$ 112 = 2 \times 2 \times 2 \times 2 \times 7 $
$ 112 = {2^4} \times 7 $
This number is divisible by $ 2,4,7,8 $and $ 16 $, which means that it has more than two factors.
Therefore, $ 15 \times 7 + 7 $ is a composite number
Additional information: the divisibility rule is given below:
(i) Divisibility rule of $ 2 $: Which states that for a number to be divisible by $ 2 $, the unit digit must have \[0,2,4,6\]or \[8\] in units place.
(ii) Divisibility rule of $ 4 $: Which states that for a number to be divisible by $ 4 $, the unit and tens digit should be divisible by $ 4 $
(iii) Divisibility rule of $ 7 $: We need to double the last digit of the number and then subtract it from the remaining number. If the result is divisible by $ 7 $, then the original number will also be divisible by $ 7 $.
Note: Different types of numbers are:
(i) Natural number: \[1,2,3,4,\]------
(ii) Whole number:\[\;0,1,2,3,4,\] ------
(iii) Integers: \[ - 4, - 3, - 2, - 1,0,1,2,3,4,\]-----
(iv) Positive integers: \[1,2,3,\]-----
(v) Negative integers: \[ - 4, - 3, - 2, - 1\]
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

