
Express the following expression $\dfrac{1}{{1 - \cos \theta + 2i\sin \theta }}$ in the standard form.
A. $\left( {\dfrac{{1 - \cos \theta }}{{2 - 2\cos \theta + 3{{\sin }^2}\theta }}} \right) + i\left( {\dfrac{{ - 2\sin }}{{2 - 2\cos \theta + 3{{\sin }^2}\theta }}} \right)$
B. $\left( {\dfrac{{1 - \cos \theta }}{{2 - 2\cos \theta + 3{{\sin }^2}\theta }}} \right) + i\left( {\dfrac{{2\sin }}{{2 - 2\cos \theta + 3{{\sin }^2}\theta }}} \right)$
C. $\left( {\dfrac{{1 - \cos \theta }}{{2 + 2\cos \theta + 3{{\sin }^2}\theta }}} \right) + i\left( {\dfrac{{ - 2\sin }}{{2 + 2\cos \theta + 3{{\sin }^2}\theta }}} \right)$
D. $\left( {\dfrac{{1 + \cos \theta }}{{2 - 2\cos \theta + 3{{\sin }^2}\theta }}} \right) + i\left( {\dfrac{{ - 2\sin }}{{2 - 2\cos \theta + 3{{\sin }^2}\theta }}} \right)$
Answer
595.2k+ views
Hint: In order to solve this question, first we will rationalize the given imaginary function in order to remove the imaginary term “i” from the denominator. Once an imaginary term is removed from the denominator, we will then use the algebraic identity in order to simplify the term and then separate the real and imaginary part of the term to bring it in standard form.
Complete step-by-step answer:
Given term is $\dfrac{1}{{1 - \cos \theta + 2i\sin \theta }}$
We know that if a complex number is given as $\dfrac{1}{{a + ib}}$ then for rationalizing we have to multiply it by $\dfrac{{a - ib}}{{a - ib}}$
By rationalizing the given term, we have
$
= \dfrac{1}{{\left( {1 - \cos \theta } \right) + \left( {2i\sin \theta } \right)}} \times \dfrac{{\left( {1 - \cos \theta } \right) - i\left( {2\sin \theta } \right)}}{{\left( {1 - \cos \theta } \right) - i\left( {2\sin \theta } \right)}} \\
\left[ {\because \left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}} \right] \\
= \dfrac{{\left( {1 - \cos \theta } \right) - \left( {i2\sin \theta } \right)}}{{{{\left( {1 - \cos \theta } \right)}^2} - {{\left( {2i\sin \theta } \right)}^2}}} \\
= \dfrac{{\left( {1 - \cos \theta } \right) - i\left( {2\sin \theta } \right)}}{{1 - 2\cos \theta + {{\cos }^2}\theta - ( - 1)4{{\sin }^2}\theta }}{\text{ }}\left[ {\because {i^2} = - 1} \right] \\
= \dfrac{{\left( {1 - \cos \theta } \right) - i\left( {2\sin \theta } \right)}}{{1 - 2\cos \theta + {{\cos }^2}\theta + 4{{\sin }^2}\theta }}{\text{ }} \\
= \dfrac{{\left( {1 - \cos \theta } \right) - i\left( {2\sin \theta } \right)}}{{1 - 2\cos \theta + 1 + 3{{\sin }^2}\theta }}{\text{ }}\left[ {\because {{\cos }^2}\theta + {{\sin }^2}\theta = 1} \right] \\
= \dfrac{{\left( {1 - \cos \theta } \right) - i\left( {2\sin \theta } \right)}}{{2 - 2\cos \theta + 3{{\sin }^2}\theta }} \\
$
Now we write it in standard form which is given as $x + iy$
$ \Rightarrow \dfrac{{\left( {1 - \cos \theta } \right)}}{{2 - 2\cos \theta + 3{{\sin }^2}\theta }}{\text{ }} + i\dfrac{{ - i\left( {2\sin \theta } \right)}}{{2 - 2\cos \theta + 3{{\sin }^2}\theta }}$
So, the correct answer is “Option C”.
Note: In order to solve these types of questions, remember the basic algebraic identities and some complex number properties such as conjugate of complex numbers. Also remember how to rationalize a fraction number. Also remember other properties of complex numbers which will help in further problems such as the value of ${i^4} = 1$ and complex numbers can be represented in exponential form or in sine-cosine form.
Complete step-by-step answer:
Given term is $\dfrac{1}{{1 - \cos \theta + 2i\sin \theta }}$
We know that if a complex number is given as $\dfrac{1}{{a + ib}}$ then for rationalizing we have to multiply it by $\dfrac{{a - ib}}{{a - ib}}$
By rationalizing the given term, we have
$
= \dfrac{1}{{\left( {1 - \cos \theta } \right) + \left( {2i\sin \theta } \right)}} \times \dfrac{{\left( {1 - \cos \theta } \right) - i\left( {2\sin \theta } \right)}}{{\left( {1 - \cos \theta } \right) - i\left( {2\sin \theta } \right)}} \\
\left[ {\because \left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}} \right] \\
= \dfrac{{\left( {1 - \cos \theta } \right) - \left( {i2\sin \theta } \right)}}{{{{\left( {1 - \cos \theta } \right)}^2} - {{\left( {2i\sin \theta } \right)}^2}}} \\
= \dfrac{{\left( {1 - \cos \theta } \right) - i\left( {2\sin \theta } \right)}}{{1 - 2\cos \theta + {{\cos }^2}\theta - ( - 1)4{{\sin }^2}\theta }}{\text{ }}\left[ {\because {i^2} = - 1} \right] \\
= \dfrac{{\left( {1 - \cos \theta } \right) - i\left( {2\sin \theta } \right)}}{{1 - 2\cos \theta + {{\cos }^2}\theta + 4{{\sin }^2}\theta }}{\text{ }} \\
= \dfrac{{\left( {1 - \cos \theta } \right) - i\left( {2\sin \theta } \right)}}{{1 - 2\cos \theta + 1 + 3{{\sin }^2}\theta }}{\text{ }}\left[ {\because {{\cos }^2}\theta + {{\sin }^2}\theta = 1} \right] \\
= \dfrac{{\left( {1 - \cos \theta } \right) - i\left( {2\sin \theta } \right)}}{{2 - 2\cos \theta + 3{{\sin }^2}\theta }} \\
$
Now we write it in standard form which is given as $x + iy$
$ \Rightarrow \dfrac{{\left( {1 - \cos \theta } \right)}}{{2 - 2\cos \theta + 3{{\sin }^2}\theta }}{\text{ }} + i\dfrac{{ - i\left( {2\sin \theta } \right)}}{{2 - 2\cos \theta + 3{{\sin }^2}\theta }}$
So, the correct answer is “Option C”.
Note: In order to solve these types of questions, remember the basic algebraic identities and some complex number properties such as conjugate of complex numbers. Also remember how to rationalize a fraction number. Also remember other properties of complex numbers which will help in further problems such as the value of ${i^4} = 1$ and complex numbers can be represented in exponential form or in sine-cosine form.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

