
Express the following in the form A + iB .
$\dfrac{1}{{1 - \cos \theta + 2i\sin \theta }}$
Answer
583.2k+ views
Hint: Start by rationalizing the term . Use trigonometric identities and conversion formulas to simplify the fraction. Separate the real and imaginary part after simplification , the result obtained will be in the form of A + iB.
Complete step-by-step answer:
Given,
$\dfrac{1}{{1 - \cos \theta + 2i\sin \theta }}$
Let us start by rationalizing this equation, that is multiplying $1 - \cos \theta - 2i\sin \theta $ with the numerator and the denominator. We get
$\dfrac{{1 \times \left( {1 - \cos \theta - 2i\sin \theta } \right)}}{{\left( {1 - \cos \theta + 2i\sin \theta } \right) \times \left( {1 - \cos \theta - 2i\sin \theta } \right)}}$
As we know $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$, applying this formula in denominator , we get
$ = \dfrac{{1 - \cos \theta - 2i\sin \theta }}{{{{\left( {1 - \cos \theta } \right)}^2} - {{\left( {2i} \right)}^2}\left( {{{\sin }^2}\theta } \right)}}$
We know ${i^2} = - 1\& {\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$, Applying this formula in denominator , we get
$ \Rightarrow \dfrac{{1 - \cos \theta - 2i\sin \theta }}{{1 + {{\cos }^2}\theta - 2\cos \theta + 4{{\sin }^2}\theta }}$
We know that ,${\sin ^2}\theta + {\cos ^2}\theta = 1$
$ \Rightarrow \dfrac{{1 - \cos \theta - 2i\sin \theta }}{{2 - 2\cos \theta + 3{{\sin }^2}\theta }}$
$ \Rightarrow \dfrac{{1 - \cos \theta - 2i\sin \theta }}{{2(1 - \cos \theta ) + 3{{\sin }^2}\theta }}$
We know, $1 - \cos \theta = 2{\sin ^2}\dfrac{\theta }{2}$ and $\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
$ \Rightarrow \dfrac{{2{{\sin }^2}\dfrac{\theta }{2} - i2 \cdot 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}}}{{2 \cdot 2{{\sin }^2}\dfrac{\theta }{2} + 3 \cdot {2^2}{{\sin }^2}\dfrac{\theta }{2}{{\cos }^2}\dfrac{\theta }{2}}}$
Taking $4{\sin ^2}\dfrac{\theta }{2}$in denominator and $4\sin \dfrac{\theta }{2}$in numerator as common , we get
$ \Rightarrow \dfrac{{4\sin \dfrac{\theta }{2}(\sin \dfrac{\theta }{2} - i\cos \dfrac{\theta }{2})}}{{4{{\sin }^2}\dfrac{\theta }{2}(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}$
On simplification , we get
$ \Rightarrow \dfrac{{(\sin \dfrac{\theta }{2} - i\cos \dfrac{\theta }{2})}}{{\sin \dfrac{\theta }{2}(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}$
Now separating the real and imaginary part , we get
$\dfrac{{\sin \dfrac{\theta }{2}}}{{\sin \dfrac{\theta }{2}(1 + 3{{\cos }^2}\dfrac{\theta }{2})}} - i\dfrac{{\cos \dfrac{\theta }{2}}}{{\sin \dfrac{\theta }{2}(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}$
On further simplification ,we get
$\dfrac{1}{{(1 + 3{{\cos }^2}\dfrac{\theta }{2})}} - i\dfrac{{\cot \dfrac{\theta }{2}}}{{(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}$
So this is in the form of A + iB , where A$ = \dfrac{1}{{(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}$and B$ = - \dfrac{{\cot \dfrac{\theta }{2}}}{{(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}$
Note: Similar questions can be solved by using the procedure , sometimes we just need to solve the exponent part first and sometimes we need to rationalize the terms. Students must know all the formulas related to trigonometric conversions. Attention must be given while substituting the values as it might lead to wrong answers.
Complete step-by-step answer:
Given,
$\dfrac{1}{{1 - \cos \theta + 2i\sin \theta }}$
Let us start by rationalizing this equation, that is multiplying $1 - \cos \theta - 2i\sin \theta $ with the numerator and the denominator. We get
$\dfrac{{1 \times \left( {1 - \cos \theta - 2i\sin \theta } \right)}}{{\left( {1 - \cos \theta + 2i\sin \theta } \right) \times \left( {1 - \cos \theta - 2i\sin \theta } \right)}}$
As we know $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$, applying this formula in denominator , we get
$ = \dfrac{{1 - \cos \theta - 2i\sin \theta }}{{{{\left( {1 - \cos \theta } \right)}^2} - {{\left( {2i} \right)}^2}\left( {{{\sin }^2}\theta } \right)}}$
We know ${i^2} = - 1\& {\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$, Applying this formula in denominator , we get
$ \Rightarrow \dfrac{{1 - \cos \theta - 2i\sin \theta }}{{1 + {{\cos }^2}\theta - 2\cos \theta + 4{{\sin }^2}\theta }}$
We know that ,${\sin ^2}\theta + {\cos ^2}\theta = 1$
$ \Rightarrow \dfrac{{1 - \cos \theta - 2i\sin \theta }}{{2 - 2\cos \theta + 3{{\sin }^2}\theta }}$
$ \Rightarrow \dfrac{{1 - \cos \theta - 2i\sin \theta }}{{2(1 - \cos \theta ) + 3{{\sin }^2}\theta }}$
We know, $1 - \cos \theta = 2{\sin ^2}\dfrac{\theta }{2}$ and $\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
$ \Rightarrow \dfrac{{2{{\sin }^2}\dfrac{\theta }{2} - i2 \cdot 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}}}{{2 \cdot 2{{\sin }^2}\dfrac{\theta }{2} + 3 \cdot {2^2}{{\sin }^2}\dfrac{\theta }{2}{{\cos }^2}\dfrac{\theta }{2}}}$
Taking $4{\sin ^2}\dfrac{\theta }{2}$in denominator and $4\sin \dfrac{\theta }{2}$in numerator as common , we get
$ \Rightarrow \dfrac{{4\sin \dfrac{\theta }{2}(\sin \dfrac{\theta }{2} - i\cos \dfrac{\theta }{2})}}{{4{{\sin }^2}\dfrac{\theta }{2}(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}$
On simplification , we get
$ \Rightarrow \dfrac{{(\sin \dfrac{\theta }{2} - i\cos \dfrac{\theta }{2})}}{{\sin \dfrac{\theta }{2}(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}$
Now separating the real and imaginary part , we get
$\dfrac{{\sin \dfrac{\theta }{2}}}{{\sin \dfrac{\theta }{2}(1 + 3{{\cos }^2}\dfrac{\theta }{2})}} - i\dfrac{{\cos \dfrac{\theta }{2}}}{{\sin \dfrac{\theta }{2}(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}$
On further simplification ,we get
$\dfrac{1}{{(1 + 3{{\cos }^2}\dfrac{\theta }{2})}} - i\dfrac{{\cot \dfrac{\theta }{2}}}{{(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}$
So this is in the form of A + iB , where A$ = \dfrac{1}{{(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}$and B$ = - \dfrac{{\cot \dfrac{\theta }{2}}}{{(1 + 3{{\cos }^2}\dfrac{\theta }{2})}}$
Note: Similar questions can be solved by using the procedure , sometimes we just need to solve the exponent part first and sometimes we need to rationalize the terms. Students must know all the formulas related to trigonometric conversions. Attention must be given while substituting the values as it might lead to wrong answers.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

