Answer
Verified
429k+ views
Hint: Here, we will first take out the common factor from the quadratic equation. Then by using the quadratic roots formula we will find the roots. We will then convert the obtained roots into the factors. And back substitute the factors in the given equation to get the required answer.
Formula Used:
Quadratic roots is given by the formula \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
Complete Step by Step Solution:
We are given with a Quadratic equation \[f\left( x \right) = \dfrac{1}{2}{x^2} + \dfrac{5}{2}x - \dfrac{3}{2}\].
Now, we will take out the common factor from all the terms. Therefore, we get
\[ \Rightarrow f\left( x \right) = \dfrac{1}{2}\left( {{x^2} + 5x - 3} \right)\] …………………………………………\[\left( 1 \right)\]
We will now find the factors of the quadratic equation by using the Quadratic roots formula.
Comparing the above equation with the general form of quadratic equation\[a{x^2} + bx + c = 0\] , we get
\[\begin{array}{l}a = 1\\b = 5\\c = - 3\end{array}\]
By substituting the coefficient of \[{x^2}\], coefficient of \[x\] and the constant term \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\], we get
\[x = \dfrac{{ - 5 \pm \sqrt {{{\left( 5 \right)}^2} - 4\left( 1 \right)\left( { - 3} \right)} }}{{2\left( 1 \right)}}\]
Simplifying the expression, we get
\[ \Rightarrow x = \dfrac{{ - 5 \pm \sqrt {25 + 12} }}{2}\]
By adding the terms, we get
\[ \Rightarrow x = \dfrac{{ - 5 \pm \sqrt {37} }}{2}\]
Now, by rewriting the equation, we get
\[ \Rightarrow 2x + 5 = \pm \sqrt {37} \]
So, we get two factors from the above equation as:
\[\begin{array}{l} \Rightarrow 2x + 5 = + \sqrt {37} \\ \Rightarrow 2x + 5 - \sqrt {37} = 0\end{array}\]
And
\[\begin{array}{l} \Rightarrow 2x + 5 = - \sqrt {37} \\ \Rightarrow 2x + 5 + \sqrt {37} = 0\end{array}\]
Now using these factors we can write the equation \[\left( {{x^2} + 5x - 3} \right)\] as:
\[\left( {{x^2} + 5x - 3} \right) = \left( {2x + 5 - \sqrt {37} } \right)\left( {2x + 5 + \sqrt {37} } \right)\]
When multiplying the factors, we will get the coefficient of \[{x^2}\] as \[4\] and not \[\dfrac{1}{2}\] , so to get the coefficient of \[{x^2}\]as \[\dfrac{1}{2}\], we will divide the product by \[\dfrac{1}{8}\].
\[ \Rightarrow f\left( x \right) = \dfrac{1}{8}\left( {2x + 5 - \sqrt {37} } \right)\left( {2x + 5 + \sqrt {37} } \right)\]
Therefore, the factors of \[f\left( x \right) = \dfrac{1}{2}{x^2} + \dfrac{5}{2}x - \dfrac{3}{2}\] are \[\dfrac{1}{8}\left( {2x + 5 - \sqrt {37} } \right)\]and\[\left( {2x + 5 + \sqrt {37} } \right)\].
Note:
A quadratic equation is an equation that has the highest degree of 2 and has two solutions. We know that we can solve the quadratic equation by using any of the four methods. Some quadratic equations cannot be solved by using the factorization method and square root method. But here we have used the method of quadratic formula. We should be careful that the quadratic equation should be arranged in the right form. As we have both the positive and negative signs in the formula, so we will write the solutions for the equations according to the signs.
Formula Used:
Quadratic roots is given by the formula \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
Complete Step by Step Solution:
We are given with a Quadratic equation \[f\left( x \right) = \dfrac{1}{2}{x^2} + \dfrac{5}{2}x - \dfrac{3}{2}\].
Now, we will take out the common factor from all the terms. Therefore, we get
\[ \Rightarrow f\left( x \right) = \dfrac{1}{2}\left( {{x^2} + 5x - 3} \right)\] …………………………………………\[\left( 1 \right)\]
We will now find the factors of the quadratic equation by using the Quadratic roots formula.
Comparing the above equation with the general form of quadratic equation\[a{x^2} + bx + c = 0\] , we get
\[\begin{array}{l}a = 1\\b = 5\\c = - 3\end{array}\]
By substituting the coefficient of \[{x^2}\], coefficient of \[x\] and the constant term \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\], we get
\[x = \dfrac{{ - 5 \pm \sqrt {{{\left( 5 \right)}^2} - 4\left( 1 \right)\left( { - 3} \right)} }}{{2\left( 1 \right)}}\]
Simplifying the expression, we get
\[ \Rightarrow x = \dfrac{{ - 5 \pm \sqrt {25 + 12} }}{2}\]
By adding the terms, we get
\[ \Rightarrow x = \dfrac{{ - 5 \pm \sqrt {37} }}{2}\]
Now, by rewriting the equation, we get
\[ \Rightarrow 2x + 5 = \pm \sqrt {37} \]
So, we get two factors from the above equation as:
\[\begin{array}{l} \Rightarrow 2x + 5 = + \sqrt {37} \\ \Rightarrow 2x + 5 - \sqrt {37} = 0\end{array}\]
And
\[\begin{array}{l} \Rightarrow 2x + 5 = - \sqrt {37} \\ \Rightarrow 2x + 5 + \sqrt {37} = 0\end{array}\]
Now using these factors we can write the equation \[\left( {{x^2} + 5x - 3} \right)\] as:
\[\left( {{x^2} + 5x - 3} \right) = \left( {2x + 5 - \sqrt {37} } \right)\left( {2x + 5 + \sqrt {37} } \right)\]
When multiplying the factors, we will get the coefficient of \[{x^2}\] as \[4\] and not \[\dfrac{1}{2}\] , so to get the coefficient of \[{x^2}\]as \[\dfrac{1}{2}\], we will divide the product by \[\dfrac{1}{8}\].
\[ \Rightarrow f\left( x \right) = \dfrac{1}{8}\left( {2x + 5 - \sqrt {37} } \right)\left( {2x + 5 + \sqrt {37} } \right)\]
Therefore, the factors of \[f\left( x \right) = \dfrac{1}{2}{x^2} + \dfrac{5}{2}x - \dfrac{3}{2}\] are \[\dfrac{1}{8}\left( {2x + 5 - \sqrt {37} } \right)\]and\[\left( {2x + 5 + \sqrt {37} } \right)\].
Note:
A quadratic equation is an equation that has the highest degree of 2 and has two solutions. We know that we can solve the quadratic equation by using any of the four methods. Some quadratic equations cannot be solved by using the factorization method and square root method. But here we have used the method of quadratic formula. We should be careful that the quadratic equation should be arranged in the right form. As we have both the positive and negative signs in the formula, so we will write the solutions for the equations according to the signs.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE