Answer
Verified
468.9k+ views
Hint: First of all, find the possible number of ways in which perfect square factors of \[{2^5},{3^6},{5^2}\] can be arranged individually. Then use the multiplicative principle of permutations to get the required answer. So, use this concept to reach the solution of the given problem.
Complete step-by-step answer:
For a perfect square, the power of each should be even.
The possible factors of \[{2^5}\] are \[{2^0},{2^1},{2^2},{2^3},{2^4},{2^5}\]
So, the possible perfect square factors of \[{2^5}\] are \[{2^0},{2^2},{2^4}\].
Therefore, possible number of ways of arranging the perfect square factors of \[{2^5}\] = 3
The possible factors of \[{3^6}\] are \[{3^0},{3^1},{3^2},{3^3},{3^4},{3^5},{3^6}\]
So, the possible perfect square factors of \[{3^6}\] are \[{3^0},{3^2},{3^4},{3^6}\].
Therefore, possible number of ways of arranging the perfect square factors of \[{3^6}\] = 4
The possible factors of \[{5^2}\] are \[{5^0},{5^1},{5^2}\]
So, the possible perfect square factors of \[{5^2}\] are \[{5^0},{5^2}\].
Therefore, possible number of ways of arranging the perfect square factors of \[{5^2}\] = 2
By using multiplicative principle of permutations, we have
The total number of ways of arranging the perfect square factors of \[{2^5} \times {3^6} \times {5^2}\] are \[3 \times 4 \times 2 = 24\]
Hence there are 24 factors of \[{2^5} \times {3^6} \times {5^2}\] which are perfect squares.
Thus, the correct option is A. 24
Note: In this problem we have used multiplicative principle permutations i.e., if there are \[x\] number of ways of arranging one thing and\[y\] number of ways of arranging another, then the total number of ways of arranging both the things is given in \[xy\] number of ways.
Complete step-by-step answer:
For a perfect square, the power of each should be even.
The possible factors of \[{2^5}\] are \[{2^0},{2^1},{2^2},{2^3},{2^4},{2^5}\]
So, the possible perfect square factors of \[{2^5}\] are \[{2^0},{2^2},{2^4}\].
Therefore, possible number of ways of arranging the perfect square factors of \[{2^5}\] = 3
The possible factors of \[{3^6}\] are \[{3^0},{3^1},{3^2},{3^3},{3^4},{3^5},{3^6}\]
So, the possible perfect square factors of \[{3^6}\] are \[{3^0},{3^2},{3^4},{3^6}\].
Therefore, possible number of ways of arranging the perfect square factors of \[{3^6}\] = 4
The possible factors of \[{5^2}\] are \[{5^0},{5^1},{5^2}\]
So, the possible perfect square factors of \[{5^2}\] are \[{5^0},{5^2}\].
Therefore, possible number of ways of arranging the perfect square factors of \[{5^2}\] = 2
By using multiplicative principle of permutations, we have
The total number of ways of arranging the perfect square factors of \[{2^5} \times {3^6} \times {5^2}\] are \[3 \times 4 \times 2 = 24\]
Hence there are 24 factors of \[{2^5} \times {3^6} \times {5^2}\] which are perfect squares.
Thus, the correct option is A. 24
Note: In this problem we have used multiplicative principle permutations i.e., if there are \[x\] number of ways of arranging one thing and\[y\] number of ways of arranging another, then the total number of ways of arranging both the things is given in \[xy\] number of ways.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE