Fill in the blanks:
$P(A)$ $P(B)$ $P(A \cap B)$ $P(A \cup B)$ $(i)$ $\dfrac{1}{3}$ $\dfrac{1}{5}$ $\dfrac{1}{{15}}$ … $(ii)$ $0.35$ … $0.25$ $0.6$ $(iii)$ $0.5$ $0.35$ … $0.7$
$P(A)$ | $P(B)$ | $P(A \cap B)$ | $P(A \cup B)$ | |
$(i)$ | $\dfrac{1}{3}$ | $\dfrac{1}{5}$ | $\dfrac{1}{{15}}$ | … |
$(ii)$ | $0.35$ | … | $0.25$ | $0.6$ |
$(iii)$ | $0.5$ | $0.35$ | … | $0.7$ |
Answer
Verified
511.8k+ views
Hint: In the above question we have to find some unknown values and some probability values are known to us. Use the basic formulae of \[P(A \cup B) = P(A) + P(B) - P(A \cap B)\] to find out the value of these unknown quantities this will help to reach the right values of these quantities.
$(i)$ In the first part, we are given the values as
$P(A) = \dfrac{1}{3}$, $P(B) = \dfrac{1}{5}$,$P(A \cap B) = \dfrac{1}{{15}}$
We know that
\[P(A \cup B) = P(A) + P(B) - P(A \cap B)\]
Therefore, by using this formula and substituting the values of equation (1) in equation (2) we get
$P(A \cap B) = \dfrac{1}{3} + \dfrac{1}{5} - \dfrac{1}{{15}}$
$ = \dfrac{{5 + 3 - 1}}{{15}}$
$ = \dfrac{{8 - 1}}{{15}}$
$ = \dfrac{7}{{15}}$
$\therefore P(A \cap B) = \dfrac{7}{{15}}$
$(ii)$ In this part, we are given the values as
$P(A) = 0.35$,$P(A \cap B) = 0.25$,$P(A \cup B) = 0.6$ … (1)
We know that,
\[P(A \cup B) = P(A) + P(B) - P(A \cap B)\] … (2)
Therefore, by using this formula and substituting the values of equation (1) in equation (2) we get
\[0.6 = 0.35 + P(B) - 0.25\]
\[P(B) = 0.6 - 0.35 + 0.25\]
\[P(B) = 0.6 - 0.10\]
\[\therefore P(B) = 0.5\]
$(iii)$ In this part, we are given the values as
$P(A) = 0.5$, $P(B) = 0.35$,$P(A \cup B) = 0.7$
We know that,
\[P(A \cup B) = P(A) + P(B) - P(A \cap B)\]
Therefore, by using this formula and substituting the values of equation (1) in equation (2) we get
\[0.7 = 0.5 + 0.35 - P(A \cap B)\]
\[P(A \cap B) = 0.5 + 0.35 - 0.7\]
\[P(A \cap B) = 0.85 - 0.7\]
\[\therefore P(A \cap B) = 0.15\]
Therefore, after getting the required solutions, we can fill the table in the form:
Note: Whenever we face such types of problems the key point is to have a good grasp of the probability formula, some of them are mentioned above while performing the solution. Let’s talk about the physical interpretation of $A \cup B$ this means that we have to find the probability of occurrence of event A and event B. This same concept can be applied to get the physical interpretation of $A \cap B$ as well.
$(i)$ In the first part, we are given the values as
$P(A) = \dfrac{1}{3}$, $P(B) = \dfrac{1}{5}$,$P(A \cap B) = \dfrac{1}{{15}}$
We know that
\[P(A \cup B) = P(A) + P(B) - P(A \cap B)\]
Therefore, by using this formula and substituting the values of equation (1) in equation (2) we get
$P(A \cap B) = \dfrac{1}{3} + \dfrac{1}{5} - \dfrac{1}{{15}}$
$ = \dfrac{{5 + 3 - 1}}{{15}}$
$ = \dfrac{{8 - 1}}{{15}}$
$ = \dfrac{7}{{15}}$
$\therefore P(A \cap B) = \dfrac{7}{{15}}$
$(ii)$ In this part, we are given the values as
$P(A) = 0.35$,$P(A \cap B) = 0.25$,$P(A \cup B) = 0.6$ … (1)
We know that,
\[P(A \cup B) = P(A) + P(B) - P(A \cap B)\] … (2)
Therefore, by using this formula and substituting the values of equation (1) in equation (2) we get
\[0.6 = 0.35 + P(B) - 0.25\]
\[P(B) = 0.6 - 0.35 + 0.25\]
\[P(B) = 0.6 - 0.10\]
\[\therefore P(B) = 0.5\]
$(iii)$ In this part, we are given the values as
$P(A) = 0.5$, $P(B) = 0.35$,$P(A \cup B) = 0.7$
We know that,
\[P(A \cup B) = P(A) + P(B) - P(A \cap B)\]
Therefore, by using this formula and substituting the values of equation (1) in equation (2) we get
\[0.7 = 0.5 + 0.35 - P(A \cap B)\]
\[P(A \cap B) = 0.5 + 0.35 - 0.7\]
\[P(A \cap B) = 0.85 - 0.7\]
\[\therefore P(A \cap B) = 0.15\]
Therefore, after getting the required solutions, we can fill the table in the form:
$P(A)$ | $P(B)$ | $P(A \cap B)$ | $P(A \cup B)$ | |
$(i)$ | $\dfrac{1}{3}$ | $\dfrac{1}{5}$ | $\dfrac{1}{{15}}$ | $\dfrac{7}{{15}}$ |
$(ii)$ | $0.35$ | $0.5$ | $0.25$ | $0.6$ |
$(iii)$ | $0.5$ | $0.35$ | $0.15$ | $0.7$ |
Note: Whenever we face such types of problems the key point is to have a good grasp of the probability formula, some of them are mentioned above while performing the solution. Let’s talk about the physical interpretation of $A \cup B$ this means that we have to find the probability of occurrence of event A and event B. This same concept can be applied to get the physical interpretation of $A \cap B$ as well.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE