Answer
Verified
468.6k+ views
Hint: A system of linear equations is either consistent or inconsistent. Their consistency depends on the ratio of their respective coefficients and the nature of the graphs represented by them. While a consistent system of linear equations have unique or infinite solutions. The inconsistent systems of linear equations have no solutions at all.
Complete step by step solution:
So, in this problem we need to find out the kind of linear equations that have no solution.
Let there be a system of two linear equations given as:
\[
{a_1}x + {b_1}y + {c_1} = 0 \\
{a_2}x + {b_2}y + {c_2} = 0 \\
\]
such that the lines represents by the equations \[{a_1}x + {b_1}y + {c_1} = 0\] and \[{a_2}x + {b_2}y + {c_2} = 0\] respectively are parallel lines which never intersect :
For a system of linear equations to have a unique solution, the lines should intersect. But since the lines in this case are parallel, it means they will never intersect anywhere and hence it will have no solution. Thus, such a system of linear equations is called inconsistent.
So we can say that an inconsistent pair of linear equations has no solution such that:
For a system of equations if $\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} \ne \dfrac{{{c_1}}}{{{c_2}}}$ then, the system of linear equations is inconsistent having no solution.
Hence an inconsistent system of linear equations has no solution.
So, our correct answer is option A.
Note: For a given pair of linear equations represented as :
\[
{a_1}x + {b_1}y + {c_1} = 0 \\
{a_2}x + {b_2}y + {c_2} = 0 \\
\]
Case 1) If, $\dfrac{{{a_1}}}{{{a_2}}} \ne \dfrac{{{b_1}}}{{{b_2}}}$ , then the system of equations is consistent having a unique solution, since the lines represented by their graphs intersect at one point.
Case 2) If $\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}}$, then the system of equations is consistent having infinitely many solutions, since the lines represented by their graphs are coincident.
Complete step by step solution:
So, in this problem we need to find out the kind of linear equations that have no solution.
Let there be a system of two linear equations given as:
\[
{a_1}x + {b_1}y + {c_1} = 0 \\
{a_2}x + {b_2}y + {c_2} = 0 \\
\]
such that the lines represents by the equations \[{a_1}x + {b_1}y + {c_1} = 0\] and \[{a_2}x + {b_2}y + {c_2} = 0\] respectively are parallel lines which never intersect :
For a system of linear equations to have a unique solution, the lines should intersect. But since the lines in this case are parallel, it means they will never intersect anywhere and hence it will have no solution. Thus, such a system of linear equations is called inconsistent.
So we can say that an inconsistent pair of linear equations has no solution such that:
For a system of equations if $\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} \ne \dfrac{{{c_1}}}{{{c_2}}}$ then, the system of linear equations is inconsistent having no solution.
Hence an inconsistent system of linear equations has no solution.
So, our correct answer is option A.
Note: For a given pair of linear equations represented as :
\[
{a_1}x + {b_1}y + {c_1} = 0 \\
{a_2}x + {b_2}y + {c_2} = 0 \\
\]
Case 1) If, $\dfrac{{{a_1}}}{{{a_2}}} \ne \dfrac{{{b_1}}}{{{b_2}}}$ , then the system of equations is consistent having a unique solution, since the lines represented by their graphs intersect at one point.
Case 2) If $\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}}$, then the system of equations is consistent having infinitely many solutions, since the lines represented by their graphs are coincident.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE