
Find a point on the y-axis which is equidistant from (2, 2) and (9, 9).
Answer
607.5k+ views
Hint- If I have to find a point on y axis which is equidistant from the given points. Any point on y-axis is marked as a point having coordinate as (0, y), that is the coordinate of x axis is always 0 if we talk about any point on y axis.
Complete step-by-step answer:
Now the given points which are equidistant from the y axis is (2, 2) and (9, 9).
Any point on the y-axis is (0, y).
Using the distance formulae which is $D = \sqrt {{{\left( {{y_2} - {y_1}} \right)}^2} + {{\left( {{x_2} - {x_1}} \right)}^2}} $………………… (1)
The distance between the points (0, y) and (2, 2) will be
${D_1} = \sqrt {{{\left( {2 - y} \right)}^2} + {{\left( {2 - 0} \right)}^2}} $
On solving we get
$ \Rightarrow {D_1} = \sqrt {{{\left( {2 - y} \right)}^2} + 4} $………………………… (2)
The distance between the points (0, y) and (9, 9) will be
${D_2} = \sqrt {{{\left( {9 - y} \right)}^2} + {{\left( {9 - 0} \right)}^2}} $
On solving we get
$ \Rightarrow {D_2} = \sqrt {{{\left( {9 - y} \right)}^2} + 81} $……………………….. (3)
Now since these point are equidistant thus equation (2) should be equal to equation (3)
${D_1} = {D_2}$
On putting the values we get
$\sqrt {{{\left( {2 - y} \right)}^2} + 4} = \sqrt {{{\left( {9 - y} \right)}^2} + 81} $
Squaring both the sides we get
${\left( {2 - y} \right)^2} + 4 = {\left( {9 - y} \right)^2} + 81$
Using the formula of ${(a - b)^2} = {a^2} + {b^2} - 2ab$
$
\Rightarrow 4 + {y^2} - 4y + 4 = 81 + {y^2} - 18y + 81 \\
\Rightarrow 8 - 4y = 162 - 18y \\
\Rightarrow 14y = 154 \\
y = \dfrac{{154}}{{14}} = 11 \\
$
Thus the point on the y-axis which is equidistant from (2, 2) and (9, 9) is$\left( {0,\;11} \right)$.
Note – Whenever we face such types of problems the key concept is simply to use distance formula. This will help us get the distance between 2 different points and then according to the conditions given in question we can find out the required quantity.
Complete step-by-step answer:
Now the given points which are equidistant from the y axis is (2, 2) and (9, 9).
Any point on the y-axis is (0, y).
Using the distance formulae which is $D = \sqrt {{{\left( {{y_2} - {y_1}} \right)}^2} + {{\left( {{x_2} - {x_1}} \right)}^2}} $………………… (1)
The distance between the points (0, y) and (2, 2) will be
${D_1} = \sqrt {{{\left( {2 - y} \right)}^2} + {{\left( {2 - 0} \right)}^2}} $
On solving we get
$ \Rightarrow {D_1} = \sqrt {{{\left( {2 - y} \right)}^2} + 4} $………………………… (2)
The distance between the points (0, y) and (9, 9) will be
${D_2} = \sqrt {{{\left( {9 - y} \right)}^2} + {{\left( {9 - 0} \right)}^2}} $
On solving we get
$ \Rightarrow {D_2} = \sqrt {{{\left( {9 - y} \right)}^2} + 81} $……………………….. (3)
Now since these point are equidistant thus equation (2) should be equal to equation (3)
${D_1} = {D_2}$
On putting the values we get
$\sqrt {{{\left( {2 - y} \right)}^2} + 4} = \sqrt {{{\left( {9 - y} \right)}^2} + 81} $
Squaring both the sides we get
${\left( {2 - y} \right)^2} + 4 = {\left( {9 - y} \right)^2} + 81$
Using the formula of ${(a - b)^2} = {a^2} + {b^2} - 2ab$
$
\Rightarrow 4 + {y^2} - 4y + 4 = 81 + {y^2} - 18y + 81 \\
\Rightarrow 8 - 4y = 162 - 18y \\
\Rightarrow 14y = 154 \\
y = \dfrac{{154}}{{14}} = 11 \\
$
Thus the point on the y-axis which is equidistant from (2, 2) and (9, 9) is$\left( {0,\;11} \right)$.
Note – Whenever we face such types of problems the key concept is simply to use distance formula. This will help us get the distance between 2 different points and then according to the conditions given in question we can find out the required quantity.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

