
Find a quadratic equation having roots -2 and -6.
Answer
603k+ views
Hint: Use factor theorem which states that if a polynomial p(x) vanishes at x = a, then x-a is a factor of p(x). Also, the number of linear factors in which a quadratic polynomial can be factored is 2. Using this information, find a general form of the quadratic polynomials with roots -2 and -6. Substitute a particular value or the variable and hence find a quadratic equation
Alternatively, use the fact that if a and b are the roots of a quadratic equation, then one such equation is given by ${{x}^{2}}-\left( a+b \right)x+ab=0$.
Complete step-by-step answer:
We have since -2 is a root of the quadratic equation
Hence x+2 is a factor of the quadratic expression
Also since -6 is a root of the quadratic equation, we have
x+2 is a factor of the quadratic expression
Hence the expression is of the form A(x+2)(x+6), where A is an arbitrary non-zero real number.
Put A = 1; we get the quadratic expression is given by
(x+2)(x+6) .
Hence the quadratic equation is
(x+2)(x+6) = 0
Using $\left( x+a \right)\left( x+b \right)={{x}^{2}}+\left( a+b \right)x+ab$, we get
${{x}^{2}}+8x+12=0$ is a quadratic equation with roots -2 and -6.
Note: We know that if a and b are the roots of a quadratic equation, then one such equation is given by ${{x}^{2}}-\left( a+b \right)x+ab=0$.
Put a = -2 and b = -6, we get
The quadratic expression with roots -2 and -6 is ${{x}^{2}}-\left( -2-6 \right)x+\left( -2 \right)\left( -6 \right)=0$
Hence the quadratic equation with roots -2 and -6 is ${{x}^{2}}+8x+12=0$.
Alternatively, use the fact that if a and b are the roots of a quadratic equation, then one such equation is given by ${{x}^{2}}-\left( a+b \right)x+ab=0$.
Complete step-by-step answer:
We have since -2 is a root of the quadratic equation
Hence x+2 is a factor of the quadratic expression
Also since -6 is a root of the quadratic equation, we have
x+2 is a factor of the quadratic expression
Hence the expression is of the form A(x+2)(x+6), where A is an arbitrary non-zero real number.
Put A = 1; we get the quadratic expression is given by
(x+2)(x+6) .
Hence the quadratic equation is
(x+2)(x+6) = 0
Using $\left( x+a \right)\left( x+b \right)={{x}^{2}}+\left( a+b \right)x+ab$, we get
${{x}^{2}}+8x+12=0$ is a quadratic equation with roots -2 and -6.
Note: We know that if a and b are the roots of a quadratic equation, then one such equation is given by ${{x}^{2}}-\left( a+b \right)x+ab=0$.
Put a = -2 and b = -6, we get
The quadratic expression with roots -2 and -6 is ${{x}^{2}}-\left( -2-6 \right)x+\left( -2 \right)\left( -6 \right)=0$
Hence the quadratic equation with roots -2 and -6 is ${{x}^{2}}+8x+12=0$.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

State and prove the Pythagoras theorem-class-10-maths-CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

What is UltraEdge (Snickometer) used for in cricket?

What are the public facilities provided by the government? Also explain each facility

Distinguish between the reserved forests and protected class 10 biology CBSE

